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Chapter 1: Introduction

Why This Guide?

Cracking a coding interview requires more than just knowing syntax—it demands
structured problem-solving, a deep understanding of patterns, and the ability to
compare multiple solutions effectively. This guide is designed to help you navigate
coding interviews with a Python-focused approach, emphasizing efficient
solutions, trade-offs, and best practices.

Problem-Solving Patterns for Structured Learning

Instead of solving problems randomly, this guide categorizes them into common
coding patterns such as Sliding Window, Two Pointers, Dynamic Programming,
Graph Traversal, and Backtracking. Recognizing these patterns allows you to:

Solve new problems faster by identifying their underlying structure.
Reduce the need to memorize individual solutions.
Approach unfamiliar problems with a systematic framework.

Multiple Solutions with Trade-Offs

For each problem, this guide does more than just present a single answer—it
explores:

Brute-force solutions to establish a baseline.
Optimized approaches using patterns and advanced techniques.
Trade-offs between time complexity, space usage, and readability.
Alternative strategies, such as iterative vs. recursive solutions.
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By the end, you’ll not only be able to solve problems but also defend your choices
in an interview with clear justifications.

How to Use This Guide

Mastering coding interviews is not about memorizing solutions but about
understanding patterns and trade-offs. This guide is structured to help you
achieve this through a progressive learning approach.

Step 1: Study Patterns Before Solving Problems

Each chapter focuses on a specific coding pattern. Before diving into problems,
study the pattern’s core concepts, common use cases, and variations.

Step 2: Solve Problems with a Structured Approach

For each problem, follow a structured four-step approach:

1. Understand the problem – Identify constraints and edge cases.
2. Develop a brute-force solution – Establish a baseline.
3. Optimize using patterns – Apply the best pattern for efficiency.
4. Analyze trade-offs – Compare time, space, and readability.

Step 3: Compare Different Solutions

After solving a problem, don’t stop at just one solution—explore alternative
approaches and analyze when each is preferable.

Step 4: Reinforce Learning with Mock Interviews

Once comfortable with patterns, simulate real interview conditions by:

Practicing with a time limit (e.g., 30–45 minutes per problem).
Explaining your thought process out loud as if in an interview.
Writing code in a plain text editor or whiteboard without autocompletion.

Interview Process Overview



1. Coding Round

The first stage of technical interviews typically involves solving coding problems
on platforms like LeetCode, HackerRank, or a company’s own system. This
guide prepares you for this round by covering:

Algorithms and data structures (arrays, graphs, trees, etc.).
Problem-solving techniques (dynamic programming, greedy, etc.).
Writing efficient, bug-free code under time constraints.

2. System Design (For Senior Roles)

For mid-level and senior roles, companies expect candidates to design scalable
systems. Topics covered include:

Scalability principles (caching, load balancing, sharding).
Database design and indexing.
Trade-offs in distributed architectures.This guide focuses primarily on
coding interviews, but system design is briefly touched upon for reference.

3. Behavioral Interviews

Many candidates focus only on coding and neglect behavioral questions, which
are critical for landing offers, especially at FAANG companies.

Use the STAR framework (Situation, Task, Action, Result) to structure
answers.
Expect questions on teamwork, leadership, and handling challenges.
Practice concise but detailed responses with real experiences.

How to Approach Problems Effectively

Clarify the problem before jumping to coding.
Write a plan (pseudocode or an outline) before implementation.
Discuss trade-offs and edge cases during your explanation.
Optimize only after getting a working solution.



Practice thinking out loud, since interviewers want to hear your thought
process.

This guide is designed to give you a structured path to success—whether you're
preparing for FAANG, startups, or any top tech company. By following this
methodology, you'll build problem-solving intuition and confidently tackle any
interview challenge. 🚀



Chapter 2: Sliding Window

Concept & When to Use

The Sliding Window technique is a powerful approach for optimizing problems
involving contiguous subarrays or substrings. Instead of using nested loops to
repeatedly compute values, we maintain a window (a range of indices) that
dynamically expands and contracts as we iterate through the input.

When to Use Sliding Window

Use this pattern when:

✔ The problem involves subarrays or substrings.

✔ You need to find an optimal subarray (max/min sum, longest/shortest
length).

✔ A brute-force approach involves recomputing overlapping parts of an array.

Types of Sliding Window Approaches

There are two main types of sliding window approaches:

🔹  Fixed-size Sliding Window

The window size is predetermined and remains constant throughout the
iteration.
Used in problems where we are asked to compute values over a fixed-length
subarray (e.g., "find the max sum of a subarray of size k").

🔹  Variable-size Sliding Window (Expanding/Shrinking Window)

The window size changes dynamically based on the problem constraints.
Used when trying to find the shortest/longest subarray that meets a
condition (e.g., "find the smallest subarray with a sum ≥ S").



Grind 75 Problems

The Sliding Window pattern appears in multiple Grind 75 problems, such as:

1. Maximum Sum Subarray of Size K (Fixed-size) (LeetCode #643)
2. Longest Substring Without Repeating Characters (Variable-size)

(LeetCode #3)
3. Minimum Window Substring (Variable-size) (LeetCode #76)

Below, we analyze each problem and discuss brute-force vs. optimized solutions.

1. Fixed-size Sliding Window

Problem: Maximum Sum Subarray of Size K

💡  Given an array nums and an integer k, find the maximum sum of any
contiguous subarray of size k.

Brute-Force Approach (O(n × k))

Iterate through all possible subarrays of length k.
Compute their sums and track the maximum sum.
Time Complexity: O(n × k) – inefficient for large arrays.

Optimized Sliding Window Approach (O(n))

Maintain a running sum of size k.
As the window slides, remove the leftmost element and add the new
rightmost element.
Time Complexity: O(n) – each element is processed once.
Space Complexity: O(1) – only a few variables are used.

Python Implementation

def maxSumSubarray(nums, k):
    max_sum, window_sum = 0, sum(nums[:k])



    for i in range(k, len(nums)):
        window_sum += nums[i] - nums[i - k]
        max_sum = max(max_sum, window_sum)

    return max_sum

# Example
nums = [2, 1, 5, 1, 3, 2]
k = 3
print(maxSumSubarray(nums, k))  # Output: 9

🚀  Trade-offs:

Uses constant space (O(1)), but requires careful index management.
Efficient alternative to recomputing sums for every subarray.

2. Variable-size Sliding Window

Problem: Longest Substring Without Repeating Characters

💡  Given a string s, find the length of the longest substring without repeating
characters.

Brute-Force Approach (O(n²))

Try all substrings and check for duplicates.
Time Complexity: O(n²) – inefficient.

Optimized Sliding Window Approach (O(n))

Use a hash set to track unique characters.
Expand the window (right pointer) while characters are unique.
When a duplicate is found, shrink the window (left pointer).
Time Complexity: O(n) – each character is processed twice.
Space Complexity: O(min(n, 26)) ≈ O(1), since we store at most 26 letters.

Python Implementation



def lengthOfLongestSubstring(s):
    char_set = set()
    left, max_length = 0, 0

    for right in range(len(s)):
        while s[right] in char_set:
            char_set.remove(s[left])
            left += 1
        char_set.add(s[right])
        max_length = max(max_length, right - left + 1)

    return max_length

# Example
s = "abcabcbb"
print(lengthOfLongestSubstring(s))  # Output: 3

🚀  Trade-offs:

Uses extra space for char_set, but ensures O(n) performance.
Works efficiently for ASCII characters but may need modifications for
Unicode.

3. Variable-size Sliding Window (Shrinking)

Problem: Minimum Window Substring

💡  Given two strings s and t, find the smallest substring of s that contains all
characters of t.

Brute-Force Approach (O(n² × m))

Try all substrings and check if they contain all characters of t.
Time Complexity: O(n² × m) – inefficient.

Optimized Sliding Window Approach (O(n))

Maintain a hash map of character frequencies in t.
Expand the right pointer until all characters are included.
Shrink the left pointer to minimize the window.



Time Complexity: O(n) – each character is processed at most twice.
Space Complexity: O(1) – only 26 characters stored in frequency maps.

Python Implementation

from collections import Counter

def minWindow(s, t):
    if not t or not s:
        return ""

    char_count = Counter(t)
    left, min_length, required_chars, current_chars = 0, float('inf'), 
len(char_count), 0
    window_counts = {}
    result = ""

    for right in range(len(s)):
        char = s[right]
        window_counts[char] = window_counts.get(char, 0) + 1

        if char in char_count and window_counts[char] == char_count[char]:
            current_chars += 1

        while left <= right and current_chars == required_chars:
            if right - left + 1 < min_length:
                min_length = right - left + 1
                result = s[left:right+1]

            window_counts[s[left]] -= 1
            if s[left] in char_count and window_counts[s[left]] < 
char_count[s[left]]:
                current_chars -= 1
            left += 1

    return result

# Example
s = "ADOBECODEBANC"
t = "ABC"
print(minWindow(s, t))  # Output: "BANC"

🚀  Trade-offs:

Uses extra space for hash maps, but avoids recomputation.
Ensures O(n) performance, ideal for long strings.



Key Takeaways

✅  Fixed vs. variable window sizes depend on problem constraints.

✅  Sliding Window reduces time complexity in subarray/substring problems.

✅  Character frequency maps help with substring containment problems.

✅  Trade-offs include extra space (sets/maps) vs. recomputation costs.

By mastering this pattern, you'll solve many problems efficiently and recognize
when to apply it in coding interviews! 🚀



Chapter 3: Two Pointers

Concept & When to Use

The Two Pointers technique is an efficient approach used to solve problems
involving pairs or sequences of elements in an array or linked list. Instead of
using nested loops, we maintain two pointers that traverse the data structure in
different ways to optimize time complexity.

When to Use Two Pointers

✔ The problem involves pairs or triplets (e.g., "find two numbers that sum to a
target").

✔ The input is sorted or can be sorted (e.g., "find the closest pair of numbers").

✔ The problem requires removal, merging, or partitioning elements in-place
(e.g., "remove duplicates from sorted array").

✔ The problem can be solved using a left-right or fast-slow traversal (e.g., "find
the middle of a linked list").

Types of Two Pointers Approaches

🔹  Left-Right Pointers: Used for problems involving sorted arrays or bounding
conditions (e.g., "find two numbers that sum to X").

🔹  Fast-Slow Pointers: Used for problems involving linked lists or cyclic
detection (e.g., "detect a cycle in a linked list").

Grind 75 Problems

The Two Pointers pattern appears in multiple Grind 75 problems, such as:

1. Two Sum II (sorted) (LeetCode #167)
2. Three Sum (LeetCode #15)



3. Container With Most Water (LeetCode #11)

Each of these problems benefits from the Two Pointers technique. Below, we
analyze each problem and discuss brute-force vs. optimized solutions.

Solutions & Trade-offs

1. Two Sum II (Sorted)

💡  Problem: Given a sorted array nums and a target sum target, return the
indices of two numbers such that they add up to target.

Brute-Force Approach (O(n²))

Use two nested loops to find the pair that sums to target.
Time Complexity: O(n²) – checking all pairs is slow for large arrays.
Space Complexity: O(1) – no extra space used.

Optimized Two Pointers Approach (O(n))

Since the array is sorted, we use left (l) and right (r) pointers to find the
target sum.
If sum is too small, move l right.
If sum is too large, move r left.
Time Complexity: O(n) – each element is checked once.
Space Complexity: O(1) – no extra storage needed.

Python Implementation

def twoSum(nums: list[int], target: int) -> list[int]:
    l, r = 0, len(nums) - 1

    while l < r:
        current_sum = nums[l] + nums[r]
        if current_sum == target:
            return [l + 1, r + 1]  # 1-based index
        elif current_sum < target:
            l += 1
        else:



            r -= 1

    return []

🚀  Trade-offs:

Sorting helps reduce complexity to O(n), but it only works if the input is
already sorted.
If the array was unsorted, we would need O(n log n) sorting time or use a
hash map (O(n) but requires extra space).

2. Three Sum

💡  Problem: Given an array nums, return all unique triplets (a, b, c) such
that a + b + c = 0.

Brute-Force Approach (O(n³))

Try all triplets and check if they sum to 0.
Time Complexity: O(n³) – extremely slow for large inputs.
Space Complexity: O(n) – storing triplets in a result list.

Optimized Sorting + Two Pointers Approach (O(n²))

Sort the array and fix one element (nums[i]).
Use two pointers (l and r) to find the remaining two numbers that sum to
nums[i].
Avoid duplicates by skipping repeated values.
Time Complexity: O(n²) – sorting takes O(n log n), and the two-pointer
search is O(n).
Space Complexity: O(n) – required for the result set.

Python Implementation

def threeSum(nums: list[int]) -> list[list[int]]:
    nums.sort()
    result = []



    for i in range(len(nums) - 2):
        if i > 0 and nums[i] == nums[i - 1]:  # Skip duplicates
            continue

        l, r = i + 1, len(nums) - 1
        while l < r:
            three_sum = nums[i] + nums[l] + nums[r]
            if three_sum == 0:
                result.append([nums[i], nums[l], nums[r]])
                l += 1
                r -= 1
                while l < r and nums[l] == nums[l - 1]:  # Skip duplicates
                    l += 1
            elif three_sum < 0:
                l += 1
            else:
                r -= 1

    return result

🚀  Trade-offs:

Sorting speeds up the solution but requires O(n log n) time.
Avoiding duplicate triplets ensures correct output.

3. Container With Most Water

💡  Problem: Given an array height, find the two lines that hold the most water.

Brute-Force Approach (O(n²))

Try all pairs and calculate water capacity.
Time Complexity: O(n²) – checking all pairs is inefficient.
Space Complexity: O(1) – no extra storage needed.

Optimized Two Pointers Approach (O(n))

Start with left (l) and right (r) pointers at both ends of the array.
Move the pointer pointing to the smaller height (since increasing width
won’t help if the height is small).
Time Complexity: O(n) – each element is checked once.



Space Complexity: O(1) – no extra storage needed.

Python Implementation

def maxArea(height: list[int]) -> int:
    l, r = 0, len(height) - 1
    max_water = 0

    while l < r:
        max_water = max(max_water, min(height[l], height[r]) * (r - l))
        if height[l] < height[r]:
            l += 1
        else:
            r -= 1

    return max_water

🚀  Trade-offs:

Optimized approach ensures O(n) performance by eliminating unnecessary
comparisons.
Moving only the smaller height pointer guarantees maximization of the
water area.

Key Takeaways

✅  Two Pointers improve efficiency in problems involving pairs, triplets, or
partitions.

✅  Sorting + Two Pointers is a common strategy for sum problems.

✅  Fast-Slow Pointers are useful for linked list cycle detection.

✅  Trade-offs include sorting time vs. extra space for hash maps.

Mastering Two Pointers will help you solve many array and linked list problems
efficiently! 🚀



Chapter 4: Fast & Slow Pointers (Cycle Detection)

Concept & When to Use

The Fast & Slow Pointers (also known as the Tortoise and Hare) technique is a
fundamental algorithm used in problems involving linked lists and cyclic
detection. It efficiently detects cycles and finds entry points in problems related to
linked lists and repeated sequences.

When to Use Fast & Slow Pointers

✔ The problem involves linked lists (e.g., "detect if a linked list has a cycle").

✔ The problem involves repeated numbers or sequences (e.g., "find the duplicate
in an array").

✔ The problem needs to detect loops or intersections (e.g., "find the start of a
cycle").

Key Idea

🔹  Use two pointers:

A slow pointer (slow) that moves one step at a time.
A fast pointer (fast) that moves two steps at a time.
If the two pointers meet, there is a cycle.

Mathematical Insight

The fast pointer moves twice as fast as the slow pointer.
If a cycle exists, the fast pointer will eventually catch up to the slow pointer.

Grind 75 Problems

The Fast & Slow Pointers technique is essential for solving the following Grind
75 problems:



1. Linked List Cycle (LeetCode #141)
2. Find Duplicate Number (LeetCode #287)

Below, we explore these problems, along with different solution approaches and
trade-offs.

Solutions & Trade-offs

1. Linked List Cycle

💡  Problem: Given the head of a linked list, determine if it contains a cycle.

Brute-Force Approach (Using a Hash Set) – O(n) Space

Store visited nodes in a hash set.
If we encounter a node we’ve seen before, a cycle exists.
Time Complexity: O(n) – traversing the linked list once.
Space Complexity: O(n) – storing all visited nodes.

Python Implementation (Using Hash Set)

def hasCycle(head: ListNode) -> bool:
    visited = set()
    while head:
        if head in visited:
            return True
        visited.add(head)
        head = head.next
    return False

Optimized Approach (Floyd’s Cycle Detection) – O(1) Space

Use fast and slow pointers.
If a cycle exists, they will eventually meet.
Time Complexity: O(n) – each node is visited at most twice.
Space Complexity: O(1) – no extra storage is used.

Python Implementation (Floyd’s Cycle Detection)



def hasCycle(head: ListNode) -> bool:
    slow, fast = head, head
    while fast and fast.next:
        slow = slow.next
        fast = fast.next.next
        if slow == fast:
            return True  # Cycle detected
    return False

🚀  Trade-offs:

Floyd’s Algorithm is optimal (O(1) space) but requires careful pointer
movement.
Hash Set method is easier to understand but requires O(n) extra space.

2. Find Duplicate Number

💡  Problem: Given an array nums with n + 1 integers where each number is in
the range [1, n], find the duplicate number without modifying the array and
using only O(1) extra space.

Brute-Force Approach (Sorting) – O(n log n) Time, O(1) Space

Sort the array and find consecutive duplicates.
Time Complexity: O(n log n) – due to sorting.
Space Complexity: O(1) – sorting in-place.

Python Implementation (Sorting)

def findDuplicate(nums: list[int]) -> int:
    nums.sort()
    for i in range(1, len(nums)):
        if nums[i] == nums[i - 1]:
            return nums[i]
    return -1

Better Approach (Using Hash Set) – O(n) Space

Use a set to track visited numbers.



Time Complexity: O(n) – each element is checked once.
Space Complexity: O(n) – storing visited numbers.

Python Implementation (Using Hash Set)

def findDuplicate(nums: list[int]) -> int:
    seen = set()
    for num in nums:
        if num in seen:
            return num
        seen.add(num)
    return -1

Optimized Approach (Floyd’s Cycle Detection) – O(1) Space

Observation:

Think of the array as a linked list where nums[i] points to
nums[nums[i]].
The duplicate number forms a cycle because it appears more than once.

Algorithm Steps:

1. Use fast and slow pointers to detect a cycle.
2. Move slow one step and fast two steps.
3. If they meet, reset slow to 0 and move both pointers one step at a time to

find the start of the cycle (duplicate number).

Python Implementation (Floyd’s Cycle Detection)

def findDuplicate(nums: list[int]) -> int:
    slow, fast = nums[0], nums[0]

    # Phase 1: Detect the cycle
    while True:
        slow = nums[slow]
        fast = nums[nums[fast]]
        if slow == fast:
            break

    # Phase 2: Find cycle start (duplicate)



    slow = nums[0]
    while slow != fast:
        slow = nums[slow]
        fast = nums[fast]

    return slow

🚀  Trade-offs:

Floyd’s Cycle Detection is O(n) time, O(1) space (optimal).
Hash Set method is simpler but uses O(n) extra space.

Key Takeaways

✅  Fast & Slow Pointers detect cycles efficiently without extra space.

✅  Floyd’s Algorithm works for both linked lists and repeated sequences.

✅  This technique is critical for problems involving cycles or repeated
numbers.

Mastering Fast & Slow Pointers will help you solve many cycle detection
problems efficiently! 🚀



Chapter 5: Merge Intervals

Concept & When to Use

The Merge Intervals pattern is useful when dealing with overlapping intervals in
problems related to scheduling, time ranges, or segment merging. The key idea is to
sort intervals and then merge or process them sequentially.

When to Use Merge Intervals

✔ The problem involves intervals or ranges (e.g., [start, end]).

✔ You need to merge overlapping intervals into a single range.

✔ The problem involves sorting and comparing intervals based on their start and
end points.

✔ You need to count active intervals at any given time (e.g., finding the
maximum number of concurrent meetings).

Key Idea

🔹  Sort intervals by start time to process them in a logical order.

🔹  Use a greedy approach to merge intervals as we iterate.

🔹  Heap (Priority Queue) can optimize counting active intervals (used in
scheduling problems).

Grind 75 Problems

The Merge Intervals technique is essential for solving the following Grind 75
problems:

1. Merge Intervals (LeetCode #56)
2. Meeting Rooms II (LeetCode #253)



Below, we explore these problems, different solution approaches, and trade-offs.

Solutions & Trade-offs

1. Merge Intervals

💡  Problem: Given an array of intervals intervals, merge all overlapping
intervals and return an array of non-overlapping intervals.

Brute-Force Approach (Checking All Pairs) – O(n²) Time

Compare each interval with every other interval to check for overlaps.
Time Complexity: O(n²) – due to nested comparisons.
Space Complexity: O(n) – for storing merged intervals.

Python Implementation (Brute Force, Inefficient)

def merge(intervals: list[list[int]]) -> list[list[int]]:
    merged = []
    for i in range(len(intervals)):
        for j in range(i + 1, len(intervals)):
            if intervals[i][1] >= intervals[j][0]:  # Overlapping condition
                intervals[j] = [min(intervals[i][0], intervals[j][0]), 
max(intervals[i][1], intervals[j][1])]
    return merged

❌  Not efficient for large inputs.

Optimized Approach (Sorting & Merging) – O(n log n) Time, O(n) Space

Steps:

1. Sort intervals based on start time.
2. Iterate through intervals and merge overlapping ones.
3. Keep track of the last merged interval and modify it if necessary.

Time Complexity: O(n log n) – due to sorting.

Space Complexity: O(n) – for storing the result.



Python Implementation (Sorting & Merging)

def merge(intervals: list[list[int]]) -> list[list[int]]:
    intervals.sort()  # Sort by start time
    merged = []

    for interval in intervals:
        if not merged or merged[-1][1] < interval[0]:
            merged.append(interval)  # No overlap, add directly
        else:
            merged[-1][1] = max(merged[-1][1], interval[1])  # Merge overlapping 
intervals

    return merged

🚀  Trade-offs:

Sorting is O(n log n), but merging is O(n), making this approach efficient.
Modifies input in-place, which can be useful but requires caution.

2. Meeting Rooms II

💡  Problem: Given an array of meeting time intervals, return the minimum
number of conference rooms required.

Brute-Force Approach (Checking All Overlaps) – O(n²) Time

Compare each meeting with every other meeting to count overlaps.
Time Complexity: O(n²) – due to nested loops.
Space Complexity: O(n) – storing overlaps.

Python Implementation (Brute Force, Inefficient)

def minMeetingRooms(intervals: list[list[int]]) -> int:
    max_rooms = 0
    for i in range(len(intervals)):
        count = 1
        for j in range(len(intervals)):
            if i != j and intervals[j][0] < intervals[i][1]:
                count += 1



        max_rooms = max(max_rooms, count)
    return max_rooms

❌  Too slow for large inputs.

Optimized Approach (Sorting + Min Heap) – O(n log n) Time, O(n) Space

Steps:

1. Sort meetings by start time.
2. Use a min-heap to keep track of meeting end times.
3. If a room is free (earliest end time is ≤ current start time), reuse it.

Otherwise, allocate a new room.

Time Complexity: O(n log n) – due to sorting and heap operations.

Space Complexity: O(n) – storing end times in a heap.

Python Implementation (Min Heap)

import heapq

def minMeetingRooms(intervals: list[list[int]]) -> int:
    if not intervals:
        return 0

    intervals.sort()  # Sort by start time
    min_heap = []  # Stores end times of meetings

    for interval in intervals:
        if min_heap and min_heap[0] <= interval[0]:
            heapq.heappop(min_heap)  # Free up a room
        heapq.heappush(min_heap, interval[1])  # Allocate new room

    return len(min_heap)  # Number of rooms used

🚀  Trade-offs:

Sorting is O(n log n), but heap operations are O(log n) per interval, making
this approach efficient.



Heap keeps track of active meetings in the smallest amount of space
possible.

Key Takeaways

✅  Sorting is often necessary when dealing with overlapping intervals.

✅  Greedy merging works well for merging intervals but does not work for
counting overlapping events.

✅  Min Heaps are useful when counting active overlapping intervals (e.g.,
meeting room allocation).

Mastering Merge Intervals will help you solve scheduling and range-based
problems efficiently! 🚀



Chapter 6: Cyclic Sort

Concept & When to Use

The Cyclic Sort pattern is useful when dealing with problems that involve a range
of numbers from 1 to N, where the goal is to rearrange the numbers into their
correct positions with minimal extra space. This technique is especially helpful in
problems involving finding duplicates, missing numbers, or misplaced elements
in an array.

When to Use Cyclic Sort

✔ The input consists of numbers in a fixed range (e.g., 1 to N).

✔ The problem requires finding missing, duplicate, or misplaced numbers.

✔ The array should be sorted with constant extra space.

✔ The values can be used as indices for in-place swapping.

Key Idea

🔹  Iterate through the array and swap each number to its correct index
(nums[i] should be at nums[nums[i] - 1]).

🔹  Continue swapping until every number is in its correct position or a cycle is
detected.

🔹  After sorting, iterate again to identify missing or duplicate numbers.

Grind 75 Problems

The Cyclic Sort technique is essential for solving the following Grind 75
problems:

1. Find All Duplicates in an Array (LeetCode #442)



2. First Missing Positive (LeetCode #41)

Below, we explore these problems, different solution approaches, and trade-offs.

Solutions & Trade-offs

1. Find All Duplicates in an Array

💡  Problem: Given an integer array nums where 1 ≤ nums[i] ≤ n (where n
is the array's length), return all the numbers that appear twice.

Brute-Force Approach (Sorting or Hash Set) – O(n log n) or O(n) Space

Sort the array and check adjacent elements for duplicates (O(n log n)).
Use a hash set to track seen elements (O(n) space).

Python Implementation (Hash Set)

def findDuplicates(nums: list[int]) -> list[int]:
    seen = set()
    duplicates = []
    for num in nums:
        if num in seen:
            duplicates.append(num)
        else:
            seen.add(num)
    return duplicates

✅  Correct, but uses extra space (O(n)).

❌  Does not modify the array in-place.

Optimized Approach (Cyclic Sort) – O(n) Time, O(1) Space

Steps:

1. Use Cyclic Sort to place each number in its correct position.
2. After sorting, iterate through the array to find misplaced numbers.

Time Complexity: O(n) – single pass sorting.



Space Complexity: O(1) – modifies input in-place.

Python Implementation (Cyclic Sort)

def findDuplicates(nums: list[int]) -> list[int]:
    result = []

    for i in range(len(nums)):
        while nums[i] != nums[nums[i] - 1]:  # Place the number at the correct 
index
            nums[nums[i] - 1], nums[i] = nums[i], nums[nums[i] - 1]

    for i in range(len(nums)):
        if nums[i] != i + 1:
            result.append(nums[i])  # Misplaced number is a duplicate

    return result

🚀  Trade-offs:

Faster than sorting (O(n) vs. O(n log n)).
Uses no extra space.
Modifies the input array in-place.

2. First Missing Positive

💡  Problem: Given an unsorted integer array nums, return the smallest missing
positive integer.

Brute-Force Approach (Sorting or Hash Set) – O(n log n) or O(n) Space

Sorting: Sort and iterate to find the first missing positive number (O(n log
n)).
Hash Set: Store numbers and check for missing ones (O(n) space).

Python Implementation (Sorting)

def firstMissingPositive(nums: list[int]) -> int:
    nums.sort()
    smallest = 1
    for num in nums:



        if num == smallest:
            smallest += 1
    return smallest

✅  Correct, but slow (O(n log n)).

❌  Extra space if using a set.

Optimized Approach (Cyclic Sort) – O(n) Time, O(1) Space

Steps:

1. Use Cyclic Sort to place each positive number at its correct index (nums[i]
= i + 1).

2. Iterate again to find the first missing number.

Time Complexity: O(n) – single pass sorting.

Space Complexity: O(1) – modifies input in-place.

Python Implementation (Cyclic Sort)

def firstMissingPositive(nums: list[int]) -> int:
    n = len(nums)

    for i in range(n):
        while 1 <= nums[i] <= n and nums[i] != nums[nums[i] - 1]:  # Place numbers 
in correct index
            nums[nums[i] - 1], nums[i] = nums[i], nums[nums[i] - 1]

    for i in range(n):
        if nums[i] != i + 1:
            return i + 1  # First missing positive number

    return n + 1  # If all are in place, return next positive number

🚀  Trade-offs:

O(n) time complexity is optimal.
Uses no extra space.
Modifies input array in-place.



Key Takeaways

✅  Cyclic Sort works best for problems involving numbers within a specific
range.

✅  Sorting in O(n) time with constant space is achievable when modifying the
array in-place.

✅  This pattern is powerful for missing/duplicate number problems.

Mastering Cyclic Sort will help you solve sorting and missing number problems
efficiently! 🚀



Chapter 7: Heap and Priority Queue

Concept & When to Use

The Heap and Priority Queue pattern is powerful for solving problems that
require efficient retrieval of the largest/smallest elements, scheduling tasks, and
maintaining dynamic order.

This technique uses:

A Min Heap (Priority Queue) to efficiently retrieve the smallest elements.
A Max Heap (simulated using a Min Heap with negated values) to retrieve the
largest elements.
Balancing heaps enables efficient median retrieval and other optimizations.

When to Use Heaps & Priority Queues

✔ Finding the Kth largest/smallest element (e.g., "Kth Largest Element in an
Array").

✔ Finding the median of a dynamic data stream (e.g., "Find Median in a
Stream").

✔ Handling priority-based tasks (e.g., "Task Scheduler").

✔ Merging multiple sorted streams efficiently (e.g., "Merge K Sorted Lists").

✔ Processing dynamic elements where order matters (e.g., "Meeting Rooms
II").

Key Idea

🔹  Min Heap (min-heap) efficiently retrieves the smallest elements.

🔹  Max Heap (max-heap) efficiently retrieves the largest elements.



🔹  Insertion & removal take O(log n) due to heap operations.

🔹  Top element retrieval takes O(1), making heaps ideal for priority-based
problems.

Grind 75 Problems

The Heap and Priority Queue pattern is essential for solving these Grind 75
problems:

1. Kth Largest Element in an Array (LeetCode #215)
2. Find Median in a Stream (LeetCode #295)
3. Task Scheduler (LeetCode #621)

Below, we explore these problems, different solution approaches, and trade-offs.

Solutions & Trade-offs

1. Kth Largest Element in an Array

💡  Problem: Given an unsorted array, find the Kth largest element.

Brute-Force Approach (Sorting) – O(n log n) Time, O(1) Space

Sort the array and return nums[-k] (the Kth largest element).

Python Implementation (Sorting)

def findKthLargest(nums: list[int], k: int) -> int:
    nums.sort()
    return nums[-k]

✅  Simple, but inefficient for large datasets due to sorting (O(n log n)).

Optimized Approach (Min Heap) – O(n log k) Time, O(k) Space

Use a Min Heap of size k to track the top k largest elements.
After iterating, the heap's root is the Kth largest element.



Python Implementation (Min Heap)

import heapq

def findKthLargest(nums: list[int], k: int) -> int:
    min_heap = []
    for num in nums:
        heapq.heappush(min_heap, num)
        if len(min_heap) > k:
            heapq.heappop(min_heap)  # Remove smallest element

    return min_heap[0]

🚀  Trade-offs:

O(n log k) time complexity, faster than sorting for large n.
O(k) space complexity, since we store only k elements.

2. Find Median in a Stream

💡  Problem: Design a data structure that supports:

addNum(int num): Inserts a number into the data stream.
findMedian(): Returns the median of all elements so far.

Brute-Force Approach (Sorting) – O(n log n) Time, O(n) Space

Store all numbers in a list and sort on every insertion.

Python Implementation (Sorting)

class MedianFinder:
    def __init__(self):
        self.data = []

    def addNum(self, num: int) -> None:
        self.data.append(num)
        self.data.sort()

    def findMedian(self) -> float:
        n = len(self.data)
        if n % 2 == 1:



            return self.data[n // 2]
        else:
            return (self.data[n // 2 - 1] + self.data[n // 2]) / 2

✅  Simple, but inefficient due to sorting on every insert (O(n log n)).

Optimized Approach (Two Heaps) – O(log n) Insert, O(1) Find Median

Use a Max Heap for the lower half of numbers.
Use a Min Heap for the upper half.
Balance the two heaps to ensure correct median retrieval.

Python Implementation (Two Heaps)

import heapq

class MedianFinder:
    def __init__(self):
        self.small = []  # Max Heap (store negative values)
        self.large = []  # Min Heap

    def addNum(self, num: int) -> None:
        heapq.heappush(self.small, -num)
        heapq.heappush(self.large, -heapq.heappop(self.small))

        if len(self.small) < len(self.large):
            heapq.heappush(self.small, -heapq.heappop(self.large))

    def findMedian(self) -> float:
        if len(self.small) > len(self.large):
            return -self.small[0]
        return (-self.small[0] + self.large[0]) / 2

🚀  Trade-offs:

O(log n) insertion vs. O(n log n) sorting.
O(1) median retrieval vs. O(n) median retrieval in sorting.
Extra space for two heaps (O(n)), but avoids frequent sorting.

3. Task Scheduler



💡  Problem: Given an array of tasks and a cooling interval n, find the minimum
time required to execute all tasks, ensuring that the same task is scheduled only
after n intervals.

Brute-Force Approach (Sorting & Simulation) – O(n log n) Time, O(n) Space

Sort tasks by frequency and process in order.
Insert idle slots manually to maintain the cooling period.

Python Implementation (Sorting)

from collections import Counter

def leastInterval(tasks: list[str], n: int) -> int:
    freq = list(Counter(tasks).values())
    freq.sort(reverse=True)
    max_freq = freq[0]
    idle_time = (max_freq - 1) * n

    for f in freq[1:]:
        idle_time -= min(max_freq - 1, f)

    idle_time = max(0, idle_time)
    return len(tasks) + idle_time

✅  Works but inefficient due to sorting (O(n log n)).

Optimized Approach (Max Heap) – O(n log k) Time, O(n) Space

Use a Max Heap to always process the most frequent tasks first.
Use a queue to track cooldown periods for tasks.

Python Implementation (Heap)

import heapq
from collections import Counter, deque

def leastInterval(tasks: list[str], n: int) -> int:
    freq_map = Counter(tasks)
    max_heap = [-f for f in freq_map.values()]
    heapq.heapify(max_heap)



    queue = deque()
    time = 0

    while max_heap or queue:
        time += 1
        if max_heap:
            count = 1 + heapq.heappop(max_heap)
            if count:
                queue.append((count, time + n))

        if queue and queue[0][1] == time:
            heapq.heappush(max_heap, queue.popleft()[0])

    return time

🚀  Trade-offs:

O(n log k) is better than O(n log n) sorting.
Max Heap ensures efficient task execution.
Uses extra space for heap & queue.

Key Takeaways

✅  Heaps and Priority Queues provide efficient ways to solve order-based
problems.

✅  Heap operations (O(log n)) are often better than sorting (O(n log n)).

✅  Min Heaps retrieve smallest elements efficiently, Max Heaps retrieve
largest elements efficiently.

✅  Use heaps for priority scheduling, median retrieval, and Kth
largest/smallest problems.

By mastering Heap and Priority Queue, you'll solve scheduling, median-finding,
and priority problems efficiently! 🚀



Chapter 8: Tree Traversal (BFS & DFS)

Concept & When to Use

Tree traversal is a fundamental technique in binary trees and graphs, used to
explore nodes in a structured manner. There are two primary traversal methods:

1. Breadth-First Search (BFS) – Explores all nodes at the same depth before
moving deeper.

2. Depth-First Search (DFS) – Explores as deep as possible before
backtracking.

These approaches help solve problems related to tree structure, hierarchy, and
relationships efficiently.

When to Use BFS vs. DFS

Criteria
BFS (Level Order

Traversal)
DFS (Preorder, Inorder,

Postorder)

When to use?
Finding shortest path, level-
wise traversal

Finding ancestors, validating
BST, path-finding

Space Complexity
O(N) (queue holds all nodes
at a level)

O(H) (stack holds recursion
depth, H=height)

Best for
Problems needing level-
wise relationships

Problems requiring full tree
exploration

Iterative
Implementation?

Uses a queue (FIFO)
Uses a stack (LIFO) or
recursion

Grind 75 Problems

The Tree Traversal pattern is crucial for solving the following Grind 75 problems:

1. Binary Tree Level Order Traversal (BFS)
2. Lowest Common Ancestor (DFS)



3. Validate Binary Search Tree (DFS)

We explore different solutions and trade-offs for these problems.

Solutions & Trade-offs

1. Binary Tree Level Order Traversal (BFS)

💡  Problem: Given a binary tree, return its level-order traversal (left to right,
level by level).

Approach: BFS (Queue) – O(N) Time, O(N) Space

Use a queue (FIFO) to process nodes level by level.
Maintain a list of nodes for each level.

Python Implementation (BFS)

from collections import deque

class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

def levelOrder(root: TreeNode) -> list[list[int]]:
    if not root:
        return []

    result, queue = [], deque([root])

    while queue:
        level = []
        for _ in range(len(queue)):  # Process all nodes at the current level
            node = queue.popleft()
            level.append(node.val)
            if node.left:
                queue.append(node.left)
            if node.right:
                queue.append(node.right)

        result.append(level)



    return result

✅  Trade-offs:

O(N) time complexity (each node is visited once).
O(N) space complexity (stores all nodes at the deepest level).
BFS ensures level-wise traversal, but uses more memory than DFS.

2. Lowest Common Ancestor (DFS)

💡  Problem: Given a binary tree and two nodes p and q, find their Lowest
Common Ancestor (LCA).

Approach: DFS (Recursive) – O(N) Time, O(H) Space

Traverse the tree using DFS until p or q is found.
If a node is an ancestor of both p and q, return it as the LCA.

Python Implementation (DFS)

def lowestCommonAncestor(root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
    if not root or root == p or root == q:
        return root  # Found p or q, return current node

    left = lowestCommonAncestor(root.left, p, q)
    right = lowestCommonAncestor(root.right, p, q)

    if left and right:
        return root  # This is the LCA

    return left if left else right  # Return non-null subtree

✅  Trade-offs:

O(N) time complexity (DFS visits each node once).
O(H) space complexity (recursive stack depth is the tree height).
Recursive DFS is elegant, but may cause stack overflow in deep trees.



3. Validate Binary Search Tree (DFS)

💡  Problem: Given a binary tree, determine if it is a valid Binary Search Tree
(BST).

Approach: DFS (Inorder Traversal) – O(N) Time, O(H) Space

Perform an inorder traversal (left → root → right).
Ensure values are strictly increasing.

Python Implementation (DFS)

def isValidBST(root: TreeNode) -> bool:
    def inorder(node, lower=float('-inf'), upper=float('inf')):
        if not node:
            return True

        if node.val <= lower or node.val >= upper:
            return False  # Violates BST property

        return inorder(node.left, lower, node.val) and inorder(node.right, 
node.val, upper)

    return inorder(root)

✅  Trade-offs:

O(N) time complexity (visits each node once).
O(H) space complexity (recursive depth depends on tree height).
DFS is memory-efficient for balanced trees but can cause stack overflows
in skewed trees.

BFS vs. DFS: Which One to Use?

Scenario Use BFS (Queue) Use DFS (Stack/Recursion)

Level-wise traversal
required?

✅  Yes ❌  No



Searching for shortest
path?

✅  Yes (e.g., unweighted
graphs)

❌  No

Tree structure validation
(BST)?

❌  No ✅  Yes (inorder traversal)

Tree depth-related
problems?

❌  No
✅  Yes (finding ancestors,
recursion)

Memory constraints? ❌  More memory
✅  Less memory in balanced
trees

Key Takeaways

✅  BFS (Queue) is best for level-wise traversal and shortest paths.

✅  DFS (Recursion/Stack) is efficient for ancestor, validation, and search
problems.

✅  Iterative solutions avoid recursion depth limits but may be harder to
implement.

✅  DFS (Inorder) is ideal for checking BST validity.

Mastering BFS & DFS will help you efficiently traverse trees and solve search,
validation, and relationship-based problems! 🚀



Chapter 9: Graph Algorithms (BFS, DFS, Union-Find,
Dijkstra)

Concept & When to Use

Graph algorithms are vital for solving problems related to network traversal,
pathfinding, and connectivity. A graph is a collection of nodes (vertices)
connected by edges, and it can represent various real-world structures such as
networks, maps, and social relationships. The four most common graph algorithms
are:

1. Breadth-First Search (BFS) – Explores all neighbors at the current level
before moving on to the next level. Ideal for finding the shortest path in
unweighted graphs.

2. Depth-First Search (DFS) – Explores as far down a branch as possible before
backtracking. Useful for solving problems related to connectivity and
pathfinding.

3. Union-Find (Disjoint Set Union, DSU) – A data structure for efficiently
tracking and merging disjoint sets. Essential for solving problems involving
connectivity (e.g., determining if two nodes are in the same connected
component).

4. Dijkstra’s Algorithm – Finds the shortest path between nodes in a weighted
graph. It is typically used for pathfinding in graphs with non-negative edge
weights.

When to Use Each Algorithm

BFS: When you need to explore nodes level-by-level or find the shortest path
in unweighted graphs.
DFS: When you need to explore all nodes in a branch first, useful for
topological sorting, connected components, and backtracking problems.
Union-Find: When you need to manage and merge sets of connected nodes
efficiently (e.g., determining if two nodes are connected in an undirected



graph).
Dijkstra’s: When you need to find the shortest path between nodes in
weighted graphs.

Grind 75 Problems

The following Grind 75 problems make use of various graph algorithms:

1. Clone Graph (DFS/BFS)
2. Course Schedule (Topological Sort)
3. Number of Islands (DFS/BFS)

Solutions & Trade-offs

1. Clone Graph (DFS/BFS)

💡  Problem: Given a reference to a graph node, clone the graph. Each node in the
graph contains a value and a list of neighbors.

Approach: BFS/DFS – O(V + E) Time, O(V) Space

For DFS, use recursion or a stack to explore each node and its neighbors,
cloning each node as you visit it.
For BFS, use a queue and iterate level-by-level, cloning nodes and adding
them to a new graph.

Python Implementation (DFS)

class Node:
    def __init__(self, val=0, neighbors=None):
        self.val = val
        self.neighbors = neighbors if neighbors is not None else []

def cloneGraph(node: 'Node') -> 'Node':
    if not node:
        return None

    visited = {}



    def dfs(node):
        if node in visited:
            return visited[node]

        # Create a new node and store it in visited
        clone = Node(node.val)
        visited[node] = clone

        # Recursively clone neighbors
        for neighbor in node.neighbors:
            clone.neighbors.append(dfs(neighbor))

        return clone

    return dfs(node)

Approach: BFS

from collections import deque

def cloneGraph(node: 'Node') -> 'Node':
    if not node:
        return None

    visited = {node: Node(node.val)}
    queue = deque([node])

    while queue:
        curr = queue.popleft()

        for neighbor in curr.neighbors:
            if neighbor not in visited:
                visited[neighbor] = Node(neighbor.val)
                queue.append(neighbor)
            visited[curr].neighbors.append(visited[neighbor])

    return visited[node]

✅  Trade-offs:

O(V + E) time complexity: Each node and edge is visited once.
O(V) space complexity: Store all visited nodes.
DFS is easy to implement recursively but can lead to stack overflow for
deep graphs. BFS is more memory-intensive but avoids recursion depth



issues.

2. Course Schedule (Topological Sort)

💡  Problem: Given a set of courses and prerequisites, determine if it's possible to
finish all the courses. This is a topological sorting problem on a directed graph.

Approach: Topological Sort – O(V + E) Time, O(V) Space

Use DFS to detect cycles and perform a topological sort. If you can complete
the sorting, the courses can be finished.
Alternatively, use Kahn's algorithm (BFS) to process nodes with no
incoming edges, which allows you to build the topological order.

Python Implementation (DFS)

from collections import defaultdict

def canFinish(numCourses: int, prerequisites: list[list[int]]) -> bool:
    graph = defaultdict(list)
    for dest, src in prerequisites:
        graph[src].append(dest)

    visited = [0] * numCourses  # 0 = unvisited, 1 = visiting, 2 = visited

    def dfs(course):
        if visited[course] == 1:  # Cycle detected
            return False
        if visited[course] == 2:
            return True

        visited[course] = 1
        for neighbor in graph[course]:
            if not dfs(neighbor):
                return False

        visited[course] = 2
        return True

    for course in range(numCourses):
        if visited[course] == 0:
            if not dfs(course):
                return False



    return True

Approach: BFS (Kahn’s Algorithm)

from collections import deque, defaultdict

def canFinish(numCourses: int, prerequisites: list[list[int]]) -> bool:
    graph = defaultdict(list)
    in_degree = [0] * numCourses

    # Build graph and calculate in-degrees
    for dest, src in prerequisites:
        graph[src].append(dest)
        in_degree[dest] += 1

    # Start with courses that have no prerequisites
    queue = deque([i for i in range(numCourses) if in_degree[i] == 0])

    visited_courses = 0

    while queue:
        course = queue.popleft()
        visited_courses += 1

        for neighbor in graph[course]:
            in_degree[neighbor] -= 1
            if in_degree[neighbor] == 0:
                queue.append(neighbor)

    return visited_courses == numCourses

✅  Trade-offs:

O(V + E) time complexity (topological sort).
O(V) space complexity (graph and in-degree storage).
DFS is elegant but may be tricky to implement for large graphs. BFS is
iterative and avoids recursion depth issues.

3. Number of Islands (DFS/BFS)

💡  Problem: Given a 2D grid representing a map of '1's (land) and '0's (water),
find the number of islands. An island is surrounded by water and is formed by



connecting adjacent lands horizontally or vertically.

Approach: DFS/BFS – O(M _ N) Time, O(M _ N) Space

Use DFS or BFS to mark all land cells connected to a given land cell as
visited (flood fill).
Count the number of connected components (islands).

Python Implementation (DFS)

def numIslands(grid: list[list[str]]) -> int:
    if not grid:
        return 0

    def dfs(i, j):
        if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]) or grid[i][j] == 
'0':
            return
        grid[i][j] = '0'  # Mark as visited
        dfs(i+1, j)
        dfs(i-1, j)
        dfs(i, j+1)
        dfs(i, j-1)

    count = 0
    for i in range(len(grid)):
        for j in range(len(grid[0])):
            if grid[i][j] == '1':  # Found an unvisited land cell
                count += 1
                dfs(i, j)  # Mark all connected land as visited

    return count

Approach: BFS

from collections import deque

def numIslands(grid: list[list[str]]) -> int:
    if not grid:
        return 0

    def bfs(i, j):
        queue = deque([(i, j)])
        grid[i][j] = '0'  # Mark as visited



        while queue:
            x, y = queue.popleft()
            for dx, dy in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
                nx, ny = x + dx, y + dy
                if 0 <= nx < len(grid) and 0 <= ny < len(grid[0]) and grid[nx][ny] 
== '1':
                    grid[nx][ny] = '0'  # Mark as visited
                    queue.append((nx, ny))

    count = 0
    for i in range(len(grid)):
        for j in range(len(grid[0])):
            if grid[i][j] == '1':  # Found an unvisited land cell
                count += 1
                bfs(i, j)  # Mark all connected land as visited

    return count

✅  Trade-offs:

O(M * N) time complexity (each cell is visited once).
O(M * N) space complexity (for the recursion stack or queue).
DFS may cause stack overflow on large grids, while BFS avoids recursion
but uses more memory for large grids.

BFS vs. DFS vs. Union-Find

BFS is best for problems involving level-order traversal or shortest path in
unweighted graphs.
DFS is ideal for problems where you need to explore every branch (e.g.,
pathfinding, connectivity).
Union-Find is optimal when you need to efficiently track connected
components or merge sets.



Chapter 10: Dynamic Programming (Top-down & Bottom-
up)

Concept & When to Use

Dynamic Programming (DP) is a powerful technique for solving optimization
problems by breaking them down into smaller subproblems. It is useful when the
problem exhibits the following two properties:

1. Optimal Substructure: The optimal solution to a problem can be constructed
from the optimal solutions of its subproblems.

2. Overlapping Subproblems: The problem can be divided into subproblems
that are solved multiple times. Instead of recalculating the solutions to the
subproblems each time, DP saves the results and reuses them.

There are two primary approaches in DP:

Top-down approach (Memoization): This approach starts from the original
problem and solves it by recursively breaking it down into smaller
subproblems. The results of these subproblems are stored to avoid redundant
calculations.
Bottom-up approach (Tabulation): This approach solves all the subproblems
first and builds the solution to the original problem incrementally.

When to Use DP:

When a problem involves making decisions over time or in stages.
When a problem can be broken down into overlapping subproblems.
When an optimal solution to a problem can be constructed from solutions to
subproblems.

Grind 75 Problems



Here are the Grind 75 problems that make use of dynamic programming
techniques:

1. Coin Change
2. Longest Increasing Subsequence
3. Edit Distance

Solutions & Trade-offs

1. Coin Change

💡  Problem: Given an integer array coins representing coins of different
denominations and an integer amount, return the fewest number of coins needed to
make up that amount. If that amount of money cannot be made up by any
combination of the coins, return -1.

Approach: Bottom-up DP (Tabulation)

This problem can be solved by defining a DP array dp[i] that represents the
minimum number of coins needed to make up amount i. The idea is to fill this DP
array by considering each coin and checking if using that coin results in a smaller
number of coins than previously known.

Time Complexity: O(n * amount) where n is the number of coin
denominations.
Space Complexity: O(amount) due to the DP array.

Python Implementation (Bottom-up Tabulation)

def coinChange(coins, amount):
    dp = [float('inf')] * (amount + 1)
    dp[0] = 0  # 0 coins needed to make amount 0

    for i in range(1, amount + 1):
        for coin in coins:
            if i - coin >= 0:
                dp[i] = min(dp[i], dp[i - coin] + 1)



    return dp[amount] if dp[amount] != float('inf') else -1

Trade-offs:

Top-down (Memoization): Involves recursion with memoization, which can
be intuitive but has overhead due to recursive calls. It can be more difficult to
implement for large input sizes compared to the bottom-up approach.
Bottom-up (Tabulation): It avoids recursion, which can lead to stack
overflow in the top-down approach. It is more efficient in terms of both time
and space, especially for larger input sizes, and is generally the preferred
approach.

2. Longest Increasing Subsequence

💡  Problem: Given an integer array nums, return the length of the longest strictly
increasing subsequence.

Approach: Bottom-up DP (Tabulation)

This problem involves building a DP table where each entry dp[i] represents the
length of the longest increasing subsequence ending at index i. For each element,
we check all previous elements to see if they can form an increasing subsequence.

Time Complexity: O(n^2), where n is the length of the array.
Space Complexity: O(n) due to the DP array.

Python Implementation (Bottom-up Tabulation)

def lengthOfLIS(nums):
    if not nums:
        return 0

    dp = [1] * len(nums)  # Initialize DP array with 1

    for i in range(1, len(nums)):
        for j in range(i):
            if nums[i] > nums[j]:
                dp[i] = max(dp[i], dp[j] + 1)



    return max(dp)

Trade-offs:

Top-down (Memoization): You can solve this problem using recursion with
memoization, but the time complexity will still be O(n^2), and managing the
recursive state and bounds could be cumbersome.
Bottom-up (Tabulation): The bottom-up approach is more intuitive and
avoids recursion. It ensures better memory usage because it doesn’t store the
recursive call stack. For large inputs, the bottom-up approach is usually more
practical.

3. Edit Distance

💡  Problem: Given two strings word1 and word2, return the minimum number
of operations required to convert word1 to word2. You have three possible
operations: insert a character, delete a character, or replace a character.

Approach: Bottom-up DP (Tabulation)

The DP array dp[i][j] represents the minimum number of operations required to
convert the first i characters of word1 to the first j characters of word2. The
transitions depend on whether the characters match or not.

Time Complexity: O(m * n), where m and n are the lengths of word1 and
word2.
Space Complexity: O(m * n) due to the DP table.

Python Implementation (Bottom-up Tabulation)

def minDistance(word1, word2):
    m, n = len(word1), len(word2)

    # Create a DP table
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    # Initialize base cases



    for i in range(m + 1):
        dp[i][0] = i  # Deleting all characters from word1

    for j in range(n + 1):
        dp[0][j] = j  # Inserting all characters into word1

    # Fill the DP table
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if word1[i - 1] == word2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1]  # No operation needed
            else:
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1  # 
Min operation

    return dp[m][n]

Trade-offs:

Top-down (Memoization): This can be more intuitive, especially for
recursion lovers. However, it uses extra space for recursion and might have
performance drawbacks for larger strings due to function call overhead.
Bottom-up (Tabulation): The bottom-up approach is more efficient in terms
of both time and space and avoids the pitfalls of recursion. It’s generally the
preferred choice for problems like this, especially for large inputs.

Recursion vs. Memoization vs. Tabulation

Recursion is the most intuitive approach for DP problems but can lead to
inefficient solutions due to redundant calculations. It also risks exceeding the
recursion limit on larger inputs.
Memoization (top-down DP) saves the results of subproblems to avoid
recomputing them. It combines the clarity of recursion with the efficiency of
storing results but still suffers from the overhead of recursive calls.
Tabulation (bottom-up DP) builds the solution iteratively and is generally
more efficient because it avoids recursion depth issues and function call
overhead. It’s the preferred approach for most DP problems due to its
simplicity and efficiency.



Summary

Dynamic Programming is a powerful technique for solving problems with
overlapping subproblems and optimal substructure.
Top-down (Memoization) is recursive and intuitive, but can be less efficient
due to overhead.
Bottom-up (Tabulation) builds the solution iteratively and is generally more
space and time-efficient, especially for larger inputs.



Chapter 11: Backtracking

Concept & When to Use

Backtracking is a general algorithmic technique used for finding all (or some)
solutions to computational problems, particularly for problems that involve
searching through all possible combinations. The idea behind backtracking is to
build the solution incrementally, one piece at a time, and discard partial solutions as
soon as it becomes clear they cannot lead to a valid solution.

When to Use Backtracking:

When solving problems that involve combinatorial search, such as finding
permutations, combinations, subsets, or paths.
In problems that have a constraint that must be satisfied for a solution to be
valid (e.g., Sudoku or n-queens).
When the solution space is large, but it's possible to prune branches early,
avoiding unnecessary exploration of invalid solutions.

Backtracking is often used to solve problems where we need to explore all possible
solutions but can eliminate many possibilities early (i.e., pruning). It is similar to
brute force, but it is more efficient because it avoids trying out solutions that are
guaranteed to fail.

Grind 75 Problems

Here are the Grind 75 problems that are suitable for solving using the backtracking
approach:

1. Subsets
2. Permutations
3. Sudoku Solver

Solutions & Trade-offs



1. Subsets

💡  Problem: Given an integer array nums, return all possible subsets (the power
set).

Approach:

Backtracking is a natural choice for solving the subsets problem because it allows
us to generate all possible subsets by making a decision at each step: whether to
include the current element in the subset or not.

Time Complexity: O(2^n), where n is the number of elements in the input
array. This is because we have two choices for each element (include or
exclude), and there are 2^n subsets in total.
Space Complexity: O(n), due to the recursive stack space and the storage
needed for the output.

Python Implementation

def subsets(nums):
    result = []

    def backtrack(start, current):
        result.append(current[:])  # Append the current subset to the result
        for i in range(start, len(nums)):
            current.append(nums[i])  # Include the element
            backtrack(i + 1, current)  # Recursively explore with the next elements
            current.pop()  # Backtrack and remove the last element

    backtrack(0, [])
    return result

Trade-offs:

Recursive approach: Backtracking with recursion is simple and intuitive.
However, it can lead to deep recursion for large input arrays, which may cause
stack overflow in extreme cases.



Iterative approach: An iterative approach using bit manipulation can also be
used for generating subsets in O(2^n) time, but it may be less readable and
intuitive than the recursive backtracking approach.

2. Permutations

💡  Problem: Given a collection of distinct integers, return all possible
permutations.

Approach:

Backtracking works well for generating permutations since we need to decide
whether to include an element at each position. The approach typically involves
swapping elements in-place and generating all permutations by exploring all
possible arrangements.

Time Complexity: O(n!), where n is the number of elements in the input
array. This is because there are n! possible permutations of n elements.
Space Complexity: O(n), as we only need space for the current permutation
and the recursive call stack.

Python Implementation

def permute(nums):
    result = []

    def backtrack(start):
        if start == len(nums):
            result.append(nums[:])  # Add the current permutation to the result
            return
        for i in range(start, len(nums)):
            nums[start], nums[i] = nums[i], nums[start]  # Swap elements
            backtrack(start + 1)  # Recurse with the next position
            nums[start], nums[i] = nums[i], nums[start]  # Backtrack (restore the 
swap)

    backtrack(0)
    return result

Trade-offs:



Recursive approach: This is the most common and clean solution, but for
large arrays, the number of permutations grows factorially, which may become
inefficient for larger inputs.
Iterative approach: Permutations can also be generated iteratively using an
algorithm like Heap's algorithm, but backtracking is more flexible and easier
to understand for many cases.

3. Sudoku Solver

💡  Problem: Solve a given Sudoku puzzle by filling the empty cells.

Approach:

Backtracking is ideal for this problem, as it involves trying out possible numbers for
each empty cell and "backtracking" when we encounter a conflict (i.e., when a
number is repeated in a row, column, or 3x3 grid).

Time Complexity: O(9^m), where m is the number of empty cells. In the
worst case, we may need to try all 9 possible digits for each empty cell, though
the solution is often found much sooner due to pruning.
Space Complexity: O(m), where m is the number of empty cells. The space is
used for the recursive stack and the board state.

Python Implementation

def solveSudoku(board):
    def is_valid(board, row, col, num):
        # Check if the number is not repeated in the row, column, or 3x3 grid
        for i in range(9):
            if board[row][i] == num or board[i][col] == num:
                return False
            if board[3 * (row // 3) + i // 3][3 * (col // 3) + i % 3] == num:
                return False
        return True

    def backtrack(board):
        for row in range(9):
            for col in range(9):
                if board[row][col] == '.':  # Find an empty cell
                    for num in '123456789':



                        if is_valid(board, row, col, num):
                            board[row][col] = num  # Try the number
                            if backtrack(board):  # Recursively fill the next cell
                                return True
                            board[row][col] = '.'  # Backtrack if it leads to a 
dead-end
                    return False  # No valid number can be placed here
        return True  # All cells are filled

    backtrack(board)

Trade-offs:

Recursive approach: The backtracking approach is intuitive and
straightforward. However, for large puzzles or complex constraints, it may be
inefficient without proper pruning.
Iterative approach: An iterative approach using constraint propagation (like
the AC-3 algorithm) can be more efficient, but backtracking is easier to
implement and understand for Sudoku puzzles.

Recursive vs. Iterative Approaches

Recursive approach (Backtracking): This approach is generally easier to
implement and understand for problems like subsets, permutations, and
Sudoku. It allows for elegant exploration of all possibilities and pruning of
invalid branches. However, recursion can be inefficient for large inputs due to
the deep call stacks, and can sometimes lead to stack overflow errors.
Iterative approach: While iterative solutions like using bit manipulation or
generating permutations using an explicit stack can be more efficient in terms
of space, they are often more complex to implement and less intuitive.
Backtracking via recursion is typically the best approach for problems that
naturally fit this paradigm.

Summary

Backtracking is a powerful technique for solving problems that involve exploring
all potential solutions, particularly for combinatorial problems such as finding



subsets, permutations, or solving puzzles. The key benefits of backtracking are:

It is often simple to implement using recursion.
It can prune invalid solutions early, making it more efficient than brute force.
The trade-off involves dealing with potentially deep recursion or the need for
additional optimizations for large inputs.

By understanding how and when to use backtracking, you'll be able to solve a
variety of complex problems that require an exhaustive search through possible
combinations while efficiently eliminating unfeasible options.



Chapter 12: Greedy Algorithms

Why Greedy Algorithms?

Greedy algorithms are a fundamental problem-solving technique that work by
making the locally optimal choice at each step with the hope of finding a global
optimum. They are particularly useful in optimization problems, such as
scheduling, graph algorithms, and interval selection. However, understanding
when a greedy approach works is key—greedy solutions do not always lead to the
optimal solution.

Key Use Cases

Optimization Problems: Finding the best solution within constraints.
Scheduling & Resource Allocation: Maximizing utilization with minimum
resources.
Graph Problems: Algorithms like Dijkstra’s shortest path and Prim’s MST.

Example Problems

1. Jump Game (Medium)
2. Gas Station (Medium)
3. Interval Scheduling Maximization (like Activity Selection Problem)

Greedy Algorithm Strategies & Implementations

1. Jump Game (Greedy Traversal)

The Jump Game problem requires determining if one can reach the last index of an
array given certain jump constraints. A greedy approach works by tracking the
furthest reachable index.

Implementation

def can_jump(nums):
    max_reach = 0



    for i, jump in enumerate(nums):
        if i > max_reach:
            return False
        max_reach = max(max_reach, i + jump)
    return True

Time Complexity: O(N)

Space Complexity: O(1)

2. Gas Station (Circular Route Optimization)

The Gas Station problem requires determining if a circular route can be completed
given gas constraints. The greedy solution involves tracking the net fuel balance
and restarting the journey from potential candidates.

Implementation

def can_complete_circuit(gas, cost):
    total, tank, start = 0, 0, 0
    for i in range(len(gas)):
        diff = gas[i] - cost[i]
        total += diff
        tank += diff
        if tank < 0:
            start = i + 1
            tank = 0
    return start if total >= 0 else -1

Time Complexity: O(N)

Space Complexity: O(1)

3. Interval Scheduling Maximization (Activity Selection Problem)

This classic interval scheduling problem involves selecting the maximum number
of non-overlapping intervals. A greedy approach sorts by end time and selects
intervals accordingly.

Implementation



def max_non_overlapping_intervals(intervals):
    intervals.sort(key=lambda x: x[1])
    count, last_end = 0, float('-inf')
    for start, end in intervals:
        if start >= last_end:
            count += 1
            last_end = end
    return count

Time Complexity: O(N log N) (sorting step)

Space Complexity: O(1)

Trade-offs & Complexity Analysis

Approach
Time

Complexity
Space

Complexity
Notes

Jump Game
(Greedy)

O(N) O(1)
Works since reaching the
farthest index is optimal

Gas Station (Greedy
Selection)

O(N) O(1)
Greedy approach ensures a
valid start if possible

Interval Scheduling
(Sorting)

O(N log N) O(1)
Sorting ensures optimal
selection of intervals

Key Takeaways

1. Greedy algorithms work well for optimization problems where local
choices lead to a global optimum.

2. Sorting-based greedy strategies are common in scheduling problems.
3. Greedy approaches don’t always work—validating correctness is crucial.

Practice Problems

LeetCode 55: Jump Game
LeetCode 134: Gas Station
LeetCode 435: Non-overlapping Intervals



Conclusion

Greedy algorithms provide efficient solutions for many optimization problems.
While they don’t always guarantee optimality, understanding their applicability and
limitations is crucial for solving interview problems effectively.



Chapter 13: Topological Sorting (Advanced Graphs)

Why Topological Sorting?

Topological Sorting is a fundamental algorithm in graph theory used for problems
involving dependency resolution, build order, and task scheduling. It applies to
Directed Acyclic Graphs (DAGs) and provides a linear ordering of nodes such that
for every directed edge u -> v, node u appears before v in the ordering.

Key Use Cases

Dependency Resolution: Ensuring correct execution order in systems like
package managers.
Build Order Problems: Determining the correct sequence of tasks with
dependencies.
Scheduling Tasks: Solving real-world scheduling and precedence problems
efficiently.

Example Problems

1. Course Schedule (Medium)
2. Alien Dictionary (Hard)

Topological Sorting Algorithms

1. Kahn’s Algorithm (BFS Approach)

This approach uses indegree tracking to iteratively process nodes with zero
incoming edges.

Algorithm Steps

1. Compute the indegree (number of incoming edges) for each node.
2. Add all nodes with indegree 0 to a queue.
3. While the queue is not empty:



Remove a node from the queue and append it to the topological order.
Reduce the indegree of its neighbors.
If any neighbor's indegree becomes 0, add it to the queue.

4. If all nodes are processed, return the order; otherwise, a cycle exists.

Implementation

from collections import deque

def topological_sort_kahn(graph, num_nodes):
    indegree = {i: 0 for i in range(num_nodes)}
    for node in graph:
        for neighbor in graph[node]:
            indegree[neighbor] += 1

    queue = deque([node for node in indegree if indegree[node] == 0])
    topo_order = []

    while queue:
        node = queue.popleft()
        topo_order.append(node)
        for neighbor in graph[node]:
            indegree[neighbor] -= 1
            if indegree[neighbor] == 0:
                queue.append(neighbor)

    return topo_order if len(topo_order) == num_nodes else []  # Detect cycle

2. DFS-Based Topological Sorting

A Depth-First Search (DFS) approach recursively explores nodes and records the
finishing order to determine the topological order.

Algorithm Steps

1. Maintain a visited set to track processed nodes.
2. Perform DFS and push nodes to a stack after all their neighbors are visited.
3. The final topological order is obtained by reversing the stack.

Implementation

def topological_sort_dfs(graph, num_nodes):
    visited = set()



    stack = []

    def dfs(node):
        if node in visited:
            return
        visited.add(node)
        for neighbor in graph[node]:
            dfs(neighbor)
        stack.append(node)

    for node in range(num_nodes):
        if node not in visited:
            dfs(node)

    return stack[::-1]  # Reverse to get correct order

Trade-offs & Complexity Analysis

Approach
Time

Complexity
Space

Complexity
Notes

Kahn’s Algorithm
(BFS)

O(V + E) O(V + E)
Good for iterative
processing

DFS-based Sorting O(V + E) O(V + E)
Useful for problems
involving recursion

Key Takeaways

1. Use Kahn’s Algorithm (BFS) when iterative processing is required (e.g.,
resolving dependencies in layers).

2. Use DFS-Based Sorting when recursion is natural and we need to track
finishing order.

3. Topological sorting only works on DAGs—cycle detection is crucial before
applying it.

Practice Problems

LeetCode 207: Course Schedule
LeetCode 210: Course Schedule II
LeetCode 269: Alien Dictionary



Conclusion

Topological Sorting is an essential technique for solving dependency-based
problems efficiently. By mastering Kahn’s Algorithm (BFS) and DFS-based
Sorting, you can tackle complex scheduling, ordering, and graph traversal problems
effectively.



Chapter 14: Union-Find (Disjoint Set Union - DSU)

Why?

Union-Find (also called Disjoint Set Union, DSU) is a powerful data structure for
efficiently solving dynamic connectivity problems in graphs. It is particularly
useful for:

Finding connected components: Identifying groups of nodes that are
connected.
Cycle detection: Checking whether adding an edge forms a cycle in an
undirected graph.
Merging related entities: Used in problems like clustering, network
connectivity, and Kruskal’s algorithm for Minimum Spanning Trees (MST).

Union-Find provides nearly O(1) (amortized) time complexity for key operations
when optimized using path compression and union by rank/size.

Core Operations

Union-Find supports two main operations:

1. Find(x): Determines the representative (root) of the set containing x.
2. Union(x, y): Merges the sets containing x and y.

Optimizations:

Path Compression: Makes future find(x) calls faster by directly linking
nodes to their root.
Union by Rank/Size: Ensures smaller trees attach to larger ones, keeping the
structure balanced.

With both optimizations, Union-Find operates in O(α(N)), where α(N) (inverse
Ackermann function) is almost constant for practical inputs.



Example Problems and Solutions

1. Number of Provinces (Medium)

Problem: Given an n x n adjacency matrix representing a graph, find the number
of connected components (provinces).

Approach:

Treat each node as its own component.
Iterate through the adjacency matrix and union connected nodes.
Count the number of unique root nodes.

Python Solution:

class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [1] * n

    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])  # Path compression
        return self.parent[x]

    def union(self, x, y):
        root_x = self.find(x)
        root_y = self.find(y)
        if root_x != root_y:
            if self.rank[root_x] > self.rank[root_y]:
                self.parent[root_y] = root_x
            elif self.rank[root_x] < self.rank[root_y]:
                self.parent[root_x] = root_y
            else:
                self.parent[root_y] = root_x
                self.rank[root_x] += 1

def findCircleNum(isConnected):
    n = len(isConnected)
    uf = UnionFind(n)

    for i in range(n):
        for j in range(i + 1, n):  # Avoid redundant checks
            if isConnected[i][j] == 1:
                uf.union(i, j)



    return len(set(uf.find(i) for i in range(n)))

# Example
isConnected = [[1,1,0],[1,1,0],[0,0,1]]
print(findCircleNum(isConnected))  # Output: 2

Trade-offs:

Better than DFS/BFS for larger graphs since it avoids recursion depth issues.
Nearly O(1) operations with optimizations, making it highly efficient.

2. Redundant Connection (Medium)

Problem: Given a tree (graph with n nodes and n-1 edges) with one extra edge,
find the redundant edge that creates a cycle.

Approach:

Initialize Union-Find for n nodes.
Process each edge and perform union(x, y).
If x and y are already in the same set, that edge is redundant.

Python Solution:

def findRedundantConnection(edges):
    uf = UnionFind(len(edges))

    for u, v in edges:
        if uf.find(u - 1) == uf.find(v - 1):  # Already connected
            return [u, v]
        uf.union(u - 1, v - 1)

# Example
edges = [[1,2],[1,3],[2,3]]
print(findRedundantConnection(edges))  # Output: [2,3]

Trade-offs:

More efficient than DFS/BFS for cycle detection in undirected graphs.
Scales well for large graphs, as opposed to an adjacency list approach.



3. Accounts Merge (Hard)

Problem: Given a list of accounts (each containing an email list), merge accounts
with overlapping emails.

Approach:

Use a Union-Find structure to group emails into components.
Store an email → index mapping to track connected components.
Sort and format the merged accounts.

Python Solution:

from collections import defaultdict

def accountsMerge(accounts):
    uf = UnionFind(len(accounts))
    email_to_index = {}

    for i, account in enumerate(accounts):
        for email in account[1:]:
            if email in email_to_index:
                uf.union(i, email_to_index[email])
            email_to_index[email] = i

    index_to_emails = defaultdict(set)
    for email, index in email_to_index.items():
        index_to_emails[uf.find(index)].add(email)

    return [[accounts[i][0]] + sorted(emails) for i, emails in 
index_to_emails.items()]

# Example
accounts = [
    ["John", "johnsmith@mail.com", "john_newyork@mail.com"],
    ["John", "johnsmith@mail.com", "john00@mail.com"],
    ["Mary", "mary@mail.com"],
    ["John", "johnnybravo@mail.com"]
]
print(accountsMerge(accounts))

Trade-offs:



Faster than DFS-based merging for large datasets.
Efficient for millions of emails, avoiding repeated DFS traversals.

When to Use Union-Find

Problem Type
Union-
Find?

Why?

Connected Components ✅  Yes
Efficient for merging nodes
dynamically.

Cycle Detection (Undirected
Graphs)

✅  Yes Detects cycles in O(1) operations.

Cycle Detection (Directed
Graphs)

❌  No
Use DFS or Kahn’s Algorithm
instead.

Kruskal’s Algorithm (MST) ✅  Yes Quickly processes edge unions.

Path Queries (Dynamic Graph) ✅  Yes
Answers connectivity in O(1)
amortized time.

Conclusion

Union-Find (Disjoint Set Union) is a crucial technique for connected components,
cycle detection, and merging problems. With path compression and union by
rank, it achieves almost constant-time operations, making it one of the most
efficient ways to handle dynamic connectivity in graphs.

Would you like to add more problem variations or explanations? 🚀



Chapter 15: Trie (Prefix Tree)

Why Trie?

The Trie (Prefix Tree) is a specialized tree data structure used for efficient storage
and retrieval of strings, particularly in scenarios involving autocomplete systems,
dictionary implementations, and prefix-based searches. Unlike hash tables, Tries
enable prefix queries in O(M) time, where M is the length of the word.

Key Use Cases

Efficient Word Storage & Retrieval: Fast lookups for dictionaries and word-
based searches.
Autocomplete & Search Suggestions: Used in search engines and predictive
text.
Prefix-Based Searches: Finding words with common prefixes quickly.

Example Problems

1. Implement Trie (Prefix Tree) (Medium)
2. Word Search II (Hard)

Trie Data Structure & Implementation

1. Trie Node & Basic Operations

A Trie consists of nodes where:

Each node has a dictionary of children (representing characters).
A boolean flag indicates if a word ends at that node.

Trie Implementation

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end_of_word = False



class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word: str):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end_of_word = True

    def search(self, word: str) -> bool:
        node = self._find_node(word)
        return node is not None and node.is_end_of_word

    def starts_with(self, prefix: str) -> bool:
        return self._find_node(prefix) is not None

    def _find_node(self, prefix: str):
        node = self.root
        for char in prefix:
            if char not in node.children:
                return None
            node = node.children[char]
        return node

2. Word Search II (Trie + DFS)

The Word Search II problem is an advanced Trie application where we combine
Trie construction with Depth-First Search (DFS) to efficiently find words in a
grid.

Optimized Approach (Trie + DFS + Backtracking)

class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = Trie()
        for word in words:
            trie.insert(word)

        rows, cols = len(board), len(board[0])
        result, visited = set(), set()

        def dfs(r, c, node, path):



            if (r, c) in visited or not (0 <= r < rows and 0 <= c < cols):
                return
            char = board[r][c]
            if char not in node.children:
                return

            visited.add((r, c))
            node = node.children[char]
            path += char

            if node.is_end_of_word:
                result.add(path)

            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                dfs(r + dr, c + dc, node, path)

            visited.remove((r, c))

        for r in range(rows):
            for c in range(cols):
                dfs(r, c, trie.root, "")

        return list(result)

Trade-offs & Complexity Analysis

Approach
Time

Complexity
Space

Complexity
Notes

Trie Insert/Search O(M) O(N * M)
Fast lookups but uses extra
space

Trie + DFS (Word
Search II)

O(N _ M _
4^L)

O(N * M)
Efficient for word grids but
backtracking can be costly

Key Takeaways

1. Tries are useful for prefix-based queries, offering a major advantage over
hash tables.

2. Word Search II combines Tries with DFS to efficiently find words in a
matrix.

3. Trade-offs exist between space efficiency and performance, but Tries are
optimal for problems requiring fast prefix searches.



Practice Problems

LeetCode 208: Implement Trie (Prefix Tree)
LeetCode 211: Design Add and Search Words Data Structure
LeetCode 212: Word Search II

Conclusion

Tries are a powerful data structure for solving word-based problems efficiently.
Mastering basic Trie operations and Trie-based search optimizations (such as
DFS in Word Search II) is crucial for excelling in string-processing problems in
coding interviews.



Chapter 16: Monotonic Stack (Stack-based Problems)

Why Monotonic Stack?

The Monotonic Stack is a specialized stack data structure used in problems that
require finding the next greater element, next smaller element, or solving range-
based calculations efficiently. It maintains elements in a strictly increasing or
decreasing order, allowing us to process elements in linear time instead of quadratic
time.

Key Use Cases

Next Greater Element Problems: Efficiently find the next greater or smaller
element for each item in an array.
Histogram-based Problems: Solve problems related to largest rectangle in
histogram or maximal rectangle.
Sliding Window Problems: Maintain a stack of useful elements while
iterating through a window of values.

Example Problems (Grind 75 & Beyond)

1. Largest Rectangle in Histogram (Hard)
2. Daily Temperatures (Medium)
3. Next Greater Element I & II (Medium)

Monotonic Stack Implementation & Variants

1. Finding Next Greater Element (NGE)

The most common monotonic stack application is to find the Next Greater
Element (NGE) for each index in an array.

Brute Force Approach



A naive way would be to use two nested loops to check for the next greater element,
leading to an O(N²) time complexity.

# Brute Force: O(N²) Time Complexity
def next_greater_element(nums):
    result = [-1] * len(nums)
    for i in range(len(nums)):
        for j in range(i + 1, len(nums)):
            if nums[j] > nums[i]:
                result[i] = nums[j]
                break
    return result

Optimized Monotonic Stack Approach

We use a decreasing stack (stores indices of elements in decreasing order) to
efficiently find the next greater element in O(N) time.

# Monotonic Stack: O(N) Time Complexity
def next_greater_element(nums):
    result = [-1] * len(nums)
    stack = []  # Stores indices

    for i in range(len(nums)):
        while stack and nums[i] > nums[stack[-1]]:
            index = stack.pop()
            result[index] = nums[i]
        stack.append(i)

    return result

2. Largest Rectangle in Histogram

The Largest Rectangle in Histogram problem is a classic example where a
monotonic increasing stack helps track potential heights efficiently.

Optimized Stack Approach

Instead of recalculating left and right bounds for each bar separately, we use a stack
to track indices and compute the maximum area in O(N) time.



# Monotonic Stack: O(N) Time Complexity
def largest_rectangle_area(heights):
    heights.append(0)  # Sentinel to flush stack at the end
    stack = []  # Stores indices of histogram bars
    max_area = 0

    for i, h in enumerate(heights):
        while stack and heights[stack[-1]] > h:
            height = heights[stack.pop()]
            width = i if not stack else i - stack[-1] - 1
            max_area = max(max_area, height * width)
        stack.append(i)

    return max_area

3. Daily Temperatures

Given a list of daily temperatures, find how many days you have to wait for a
warmer temperature.

# Monotonic Stack: O(N) Time Complexity
def daily_temperatures(temperatures):
    result = [0] * len(temperatures)
    stack = []  # Stores indices

    for i, temp in enumerate(temperatures):
        while stack and temp > temperatures[stack[-1]]:
            index = stack.pop()
            result[index] = i - index
        stack.append(i)

    return result

Trade-offs & Complexity Analysis

Approach
Time

Complexity
Space

Complexity
Notes

Brute Force O(N²) O(1)
Inefficient for large input
sizes

Monotonic
Stack

O(N) O(N)
Optimal for stack-based
problems



Key Takeaways

1. Use monotonic stacks for problems that require range-based calculations
efficiently.

2. Stack direction matters: Increasing stacks are used for finding next smaller
elements, while decreasing stacks help in next greater element problems.

3. Histogram problems can be solved efficiently using a stack-based approach
to keep track of valid widths.

Practice Problems

LeetCode 84: Largest Rectangle in Histogram
LeetCode 739: Daily Temperatures
LeetCode 503: Next Greater Element II

Conclusion

The Monotonic Stack is an essential tool in tackling stack-based problems
efficiently, often reducing the complexity from O(N²) to O(N). Mastering this
technique is crucial for solving range queries, histogram problems, and sliding
window optimizations effectively.



Chapter 17: Bit Manipulation

Concept & When to Use

Bit manipulation involves directly manipulating bits (the 0s and 1s) that make up
data. It is a low-level operation that can be used for efficient problem-solving,
especially when space or time complexity is a concern. Bit manipulation problems
often involve performing operations such as AND, OR, XOR, shifting, and toggling
to solve specific challenges.

Common Bit Manipulation Operations:

1. AND (&): Performs a logical AND between two bits. Only returns 1 when
both bits are 1.

2. OR (|): Performs a logical OR between two bits. Returns 1 if at least one bit is
1.

3. XOR (^): Performs a logical XOR between two bits. Returns 1 if the bits are
different.

4. NOT (~): Inverts all the bits (i.e., turns 0s to 1s and vice versa).
5. Bit Shifts: Moves the bits left (<<) or right (>>). This is often used to multiply

or divide by powers of 2.

When to Use Bit Manipulation:

When a problem requires working with binary numbers or flags.
To reduce space or time complexity, especially in problems that involve
checking subsets, counting bits, or performing bitwise arithmetic.
When dealing with large datasets where other methods may be too slow or
inefficient.

Grind 75 Problems

Here are the Grind 75 problems that make use of bit manipulation techniques:



1. Single Number
2. Reverse Bits

Solutions & Trade-offs

1. Single Number

💡  Problem: Given a non-empty array of integers, every element appears twice
except for one. Find that single one.

Approach: XOR

One of the most common and efficient bit manipulation techniques for this problem
is XOR. The XOR operation has the following properties:

a ^ a = 0: XORing a number with itself results in 0.
a ^ 0 = a: XORing a number with 0 results in the number itself.
XOR is commutative and associative.

If we XOR all the numbers together, the pairs will cancel out because of the first
property (a ^ a = 0), leaving only the single number.

Time Complexity: O(n), where n is the number of elements in the array.
Space Complexity: O(1), as we only need a single variable to store the result.

Python Implementation

def singleNumber(nums):
    result = 0
    for num in nums:
        result ^= num  # XOR operation
    return result

Trade-offs:

XOR approach: This approach is highly efficient in terms of time and space
complexity. It is simple and works perfectly for this type of problem.



Set-based approach: A more naive approach would involve using a set to
store the numbers that have been seen and check for duplicates. However, this
solution would have O(n) time complexity with O(n) space complexity, which
is less efficient compared to the XOR approach.

2. Reverse Bits

💡  Problem: Reverse bits of a given 32-bit unsigned integer.

Approach: Bit Shifting

The approach involves reversing the bits by repeatedly shifting the bits from the
input number and placing them into a new number. You can achieve this by shifting
the result to the left and shifting the input number to the right while checking and
extracting the rightmost bit.

Time Complexity: O(1) (since we only need 32 operations for a 32-bit
number).
Space Complexity: O(1), as we only need a fixed amount of space for the
result.

Python Implementation

def reverseBits(n):
    result = 0
    for _ in range(32):
        result = (result << 1) | (n & 1)  # Shift result left and add the rightmost 
bit of n
        n >>= 1  # Shift n right by 1
    return result

Trade-offs:

Bit shifting approach: This is the most efficient approach for reversing bits
because it operates in constant time (O(1)) and space (O(1)). It also doesn't
require additional space for storing the binary representation or performing
unnecessary calculations.



Set-based approach: Another method might involve converting the number to
binary and reversing the string representation, but this is less efficient in terms
of both time and space, and it involves additional steps like converting back to
an integer.

XOR vs. Set-based Approach

XOR is a powerful operation for problems where elements appear in pairs or
need to be canceled out. It offers optimal time and space complexity (O(n) and
O(1), respectively) and is often the best choice for problems like finding the
single number or detecting duplicates.
Set-based approach is less efficient when dealing with problems that involve
bit-level operations. While simple to implement, it has a higher space
complexity (O(n)) and can be slower for large inputs, as it requires extra space
and operations like inserting and checking for duplicates.

When to Use XOR:

When the problem involves finding unique numbers in an array where
duplicates cancel each other out.
XOR is highly efficient for problems involving pairs, like "Single Number,"
"Find the Two Non-Repeating Numbers," or parity-related tasks.

When to Use a Set-based Approach:

When dealing with problems that don't have the properties that make XOR
efficient (e.g., problems where you need to track all unique elements or don't
have a clear cancellation property).
Set-based solutions are easier to understand and can be helpful for simpler
problems or when learning bit manipulation concepts.

Summary

Bit Manipulation is a highly efficient way to solve problems that deal with
binary operations and bits.



XOR is often the optimal approach for problems where elements cancel each
other out, such as in the "Single Number" problem.
Bit Shifting is a powerful technique for reversing bits and other bit-level
operations.
Set-based approaches are less efficient than bit manipulation but can be used
for simpler problems or as a stepping stone to learning bit manipulation.

By mastering these bit manipulation techniques, you'll be able to solve a variety of
problems efficiently, especially those that require handling binary representations or
optimizing space and time complexity.



Chapter 18: Kadane’s Algorithm (Maximum Subarray)

Why?

Kadane’s Algorithm is a greedy + dynamic programming technique that
efficiently finds the maximum sum subarray in an array. It is commonly used
when:

Finding the largest contiguous sum in an array (e.g., stock market analysis,
gaming scores).
Solving DP problems with subarray constraints in O(N) time instead of
O(N²) or O(N³) brute-force approaches.
Handling problems that require maintaining local/global optimal values
efficiently.

Kadane’s Algorithm works because a maximum subarray ending at index i must
either:

1. Extend the previous subarray (accumulate sum).
2. Start a new subarray at index i (if previous sum is negative).

This simple "keep or restart" decision makes Kadane’s Algorithm both greedy
and optimal.

Core Idea

We maintain two variables:

max_sum → Tracks the maximum subarray sum found so far.
current_sum → Tracks the current running sum.

At each index, update current_sum as:

\text{current_sum} = \max(\text{current_sum} + \text{nums}[i], \text{nums}[i])

Update max_sum if current_sum is larger.



Example Problems and Solutions

1. Maximum Subarray (Medium)

Problem: Given an array nums, find the contiguous subarray with the maximum
sum.

Approach:

Iterate through the array, maintaining current_sum and max_sum.
If current_sum drops below 0, restart the subarray at the current index.
Return max_sum.

Python Solution:

def maxSubArray(nums):
    max_sum = float('-inf')
    current_sum = 0

    for num in nums:
        current_sum = max(current_sum + num, num)
        max_sum = max(max_sum, current_sum)

    return max_sum

# Example
nums = [-2,1,-3,4,-1,2,1,-5,4]
print(maxSubArray(nums))  # Output: 6  (Subarray: [4,-1,2,1])

Trade-offs:

✅  O(N) time complexity (optimal).

✅  Constant space (no extra storage needed).

⚠️  Only works for sum-based problems (modifications needed for other
variations).

2. Maximum Product Subarray (Medium)



Problem: Find the contiguous subarray with the maximum product.

Challenge:

Unlike sums, products can flip signs (negative × negative = positive).
We must track both maximum and minimum products at each step.

Approach:

Maintain max_product and min_product (since a negative min product
can turn into a large positive).
At each step, update: \text{temp_max} = \max(\text{num},
\text{max_product} \times \text{num}, \text{min_product} \times \text{num})
\text{min_product} = \min(\text{num}, \text{max_product} \times
\text{num}, \text{min_product} \times \text{num})
max_product becomes temp_max.

Python Solution:

def maxProduct(nums):
    max_product = min_product = result = nums[0]

    for num in nums[1:]:
        temp_max = max(num, max_product * num, min_product * num)
        min_product = min(num, max_product * num, min_product * num)
        max_product = temp_max

        result = max(result, max_product)

    return result

# Example
nums = [2,3,-2,4]
print(maxProduct(nums))  # Output: 6  (Subarray: [2,3])

Trade-offs:

✅  Handles negative numbers correctly.

✅  O(N) time complexity (optimal).



⚠️  Requires extra tracking (min & max products).

When to Use Kadane’s Algorithm

Problem Type
Kadane’s

Algorithm?
Why?

Maximum Sum Subarray ✅  Yes Standard Kadane’s Algorithm.

Maximum Product
Subarray

✅  Yes (Modified) Track both min & max.

Subarrays with Constraints ⚠️  Maybe
Needs variations (e.g., at most K
elements).

Maximum Subarray with
Removal

❌  No DP may be better.

2D Grid (Max Sum) ❌  No
Use Kadane’s on rows, then
prefix sums.

Conclusion

Kadane’s Algorithm is a powerful greedy DP technique for finding maximum
subarrays in O(N) time. With minor modifications, it can handle product
subarrays, constraints, and grid problems.



Chapter 19: Rolling Hash & Rabin-Karp (String Algorithms)

Why?

Rolling Hash and Rabin-Karp are powerful hashing techniques for efficient
string matching, especially when dealing with:

Substring search (e.g., checking if a pattern exists in a text).
Detecting repeated sequences (e.g., plagiarism detection, bioinformatics).
Finding anagrams or scrambled substrings efficiently.

Traditional brute-force substring search takes O(N × M) time (where N is text
length, M is pattern length).

Rolling Hash reduces this to O(N) on average using a sliding window hash
function.

Core Idea

Rolling Hash (Sliding Window Hashing)

Instead of recomputing the entire hash for each substring, Rolling Hash efficiently
updates it in O(1) time when sliding the window.

For a string S of length N and a window of size M:

Compute the initial hash of S[:M].
Slide the window: Remove the left character, add the right character, and
compute the new hash efficiently.

Hash formula for a base B and prime P:

\text{Hash} = (B \times \text{previous_hash} - \text{outgoing_char} \times B^M +
\text{incoming_char}) \mod P

Rabin-Karp Algorithm (Pattern Matching)



Uses rolling hash for fast substring matching:

1. Compute the hash of the pattern.
2. Compute the hash of each window in the text.
3. If hashes match, compare characters to confirm (to avoid false positives).
4. Slide the window and update the hash in O(1).

Example Problems and Solutions

1. Repeated DNA Sequences (Medium)

Problem: Given a DNA sequence s, find all 10-letter-long substrings that appear
more than once.

Approach:

Use rolling hash (or set-based lookup) to detect duplicate substrings
efficiently.

Python Solution (Rolling Hash)

def findRepeatedDnaSequences(s):
    if len(s) < 10:
        return []

    seen = set()
    repeated = set()
    base = 4  # Since DNA has 4 characters (A, C, G, T)
    prime = 10**9 + 7
    hash_val = 0
    B_M = pow(base, 9, prime)  # Base^M-1 for rolling hash

    char_map = {'A': 0, 'C': 1, 'G': 2, 'T': 3}

    for i in range(len(s)):
        hash_val = (hash_val * base + char_map[s[i]]) % prime

        if i >= 9:  # When we have a valid 10-char window
            if hash_val in seen:
                repeated.add(s[i-9:i+1])
            seen.add(hash_val)



            # Remove leftmost char from hash (rolling hash update)
            hash_val = (hash_val - char_map[s[i-9]] * B_M) % prime

    return list(repeated)

# Example
s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"
print(findRepeatedDnaSequences(s))  # Output: ["AAAAACCCCC", "CCCCCAAAAA"]

✅  O(N) complexity, much faster than O(N²) brute force.

✅  Memory-efficient hashing instead of storing all substrings.

⚠️  Potential hash collisions (rare but possible).

2. Substring with Concatenation of All Words (Hard)

Problem: Given a string s and a list of words (all of same length), find all starting
indices of substrings in s that are concatenations of all words in any order.

Approach:

Each window contains a permutation of the words.
Rolling hash + sliding window for fast checking.

Python Solution (HashMap + Sliding Window)

from collections import Counter

def findSubstring(s, words):
    if not s or not words:
        return []

    word_len = len(words[0])
    word_count = len(words)
    total_len = word_len * word_count
    word_map = Counter(words)
    result = []

    for i in range(word_len):  # Try all possible start positions
        left, right = i, i
        current_map = Counter()



        while right + word_len <= len(s):
            word = s[right:right + word_len]
            right += word_len

            if word in word_map:
                current_map[word] += 1
                while current_map[word] > word_map[word]:  # Too many instances of 
a word
                    current_map[s[left:left + word_len]] -= 1
                    left += word_len
                if right - left == total_len:  # Valid window
                    result.append(left)
            else:  # Invalid word, reset window
                current_map.clear()
                left = right

    return result

# Example
s = "barfoothefoobarman"
words = ["foo", "bar"]
print(findSubstring(s, words))  # Output: [0, 9]

✅  Sliding window avoids unnecessary recomputation.

✅  Efficient O(N) solution compared to brute-force O(N × M!).

⚠️  Does not use rolling hash (word-based hashmap instead).

When to Use Rolling Hash vs. Other String Matching Algorithms

Algorithm Best Use Case
Time

Complexity
Notes

Brute Force (O(N ×
M))

Short pattern
matching

O(N × M) Slow for large inputs

KMP (Knuth-
Morris-Pratt)

Exact pattern
matching

O(N + M)
Good when no hash
needed

Rabin-Karp
(Rolling Hash)

Multiple pattern
matching

O(N) (avg) Fast for large texts

Aho-Corasick (Trie
+ BFS)

Multi-pattern
matching

O(N + M)
Works for dictionary-
based lookups



Conclusion

Rolling Hash is an efficient O(N) technique for substring matching (vs.
O(N × M) brute force).
Rabin-Karp extends Rolling Hash for pattern matching with quick hash
comparisons.
Useful for detecting duplicates, plagiarism detection, DNA sequence
analysis, and anagram search.
Alternative string algorithms (KMP, Aho-Corasick) are better for certain
problems.



Chapter 20: Fenwick Tree / Segment Tree (Advanced Data
Structures)

Why?

Some problems require efficient range queries (e.g., sum, min, max) while
allowing fast updates to the data.

For such scenarios, Fenwick Tree (Binary Indexed Tree, BIT) and Segment Tree
provide powerful solutions.

They are particularly useful for:

Prefix sum / range sum queries with updates.
Range minimum / maximum queries (RMQ).
Dynamic problems where values are frequently modified (e.g., stock
prices, competitive programming).

Data Structure
Updates

(update())
Queries

(query())
Space

Complexity

Fenwick Tree
(BIT)

O(log N) O(log N) O(N)

Segment Tree O(log N) O(log N) O(2N)

Fenwick Tree (Binary Indexed Tree - BIT)

A Fenwick Tree efficiently supports prefix sum queries and point updates in
O(log N) time using bitwise operations.

It is simpler and more memory-efficient than a Segment Tree but cannot handle
range updates efficiently.

Operations



1. Update an index (update(idx, val)) → Adds val to arr[idx] and
propagates changes.

2. Prefix sum query (query(idx)) → Computes the sum of arr[0] to
arr[idx].

3. Range sum query (range_sum(left, right)) → Uses
query(right) - query(left-1).

Python Implementation

class FenwickTree:
    def __init__(self, n):
        self.size = n
        self.tree = [0] * (n + 1)

    def update(self, index, value):
        while index <= self.size:
            self.tree[index] += value
            index += index & -index  # Move to parent

    def query(self, index):
        total = 0
        while index > 0:
            total += self.tree[index]
            index -= index & -index  # Move to previous index
        return total

    def range_sum(self, left, right):
        return self.query(right) - self.query(left - 1)

# Example Usage
arr = [1, 3, 5]
fenwick = FenwickTree(len(arr))

for i, num in enumerate(arr):
    fenwick.update(i + 1, num)  # BIT uses 1-based indexing

print(fenwick.range_sum(1, 2))  # Output: 4 (1 + 3)

✅  Fast updates and queries in O(log N).

⚠️  Cannot efficiently handle range updates (use Segment Tree instead).

Segment Tree



A Segment Tree is a divide-and-conquer data structure that stores information
about array segments.

Unlike a Fenwick Tree, a Segment Tree supports range queries on various
operations (sum, min, max, GCD, etc.).

Operations

1. Build the tree (build()) → Constructs the Segment Tree in O(N).
2. Point update (update(idx, val)) → Modifies a value and updates

affected segments.
3. Range query (query(left, right)) → Recursively queries segments

in O(log N).

Python Implementation

class SegmentTree:
    def __init__(self, nums):
        self.n = len(nums)
        self.tree = [0] * (2 * self.n)  # Segment tree array
        self.build(nums)

    def build(self, nums):
        # Fill the leaves
        for i in range(self.n):
            self.tree[self.n + i] = nums[i]
        # Build the tree by calculating parents
        for i in range(self.n - 1, 0, -1):
            self.tree[i] = self.tree[2 * i] + self.tree[2 * i + 1]

    def update(self, index, value):
        index += self.n  # Move to leaf
        self.tree[index] = value  # Update leaf
        # Propagate updates to the root
        while index > 1:
            index //= 2
            self.tree[index] = self.tree[2 * index] + self.tree[2 * index + 1]

    def query(self, left, right):
        left += self.n  # Move to leaf range
        right += self.n
        total = 0
        while left <= right:
            if left % 2 == 1:  # If left is a right child, include it



                total += self.tree[left]
                left += 1
            if right % 2 == 0:  # If right is a left child, include it
                total += self.tree[right]
                right -= 1
            left //= 2
            right //= 2
        return total

# Example Usage
arr = [1, 3, 5]
seg_tree = SegmentTree(arr)

print(seg_tree.query(0, 2))  # Output: 9 (1 + 3 + 5)
seg_tree.update(1, 2)  # Update index 1 to 2
print(seg_tree.query(0, 2))  # Output: 8 (1 + 2 + 5)

✅  Supports a variety of range queries (sum, min, max, etc.).

✅  Efficient for large-scale dynamic data updates.

⚠️  Takes more space (2N instead of N for Fenwick Tree).

When to Use Fenwick Tree vs. Segment Tree

Use Case Fenwick Tree Segment Tree

Point updates + prefix sum queries✅  Best Choice✅  Works but overkill

Range sum queries ✅  Yes ✅  Yes

Range min/max/GCD queries ❌  No ✅  Best Choice

Range updates (lazy propagation) ❌  No ✅  Yes

Space efficiency ✅  O(N) ❌  O(2N)

Example Problem: Range Sum Query - Mutable

Problem: Given an array, efficiently perform:

1. update(index, value): Change arr[index] = value.
2. sumRange(left, right): Return sum of arr[left:right].

Approach Time Complexity



Brute Force (Iterate Every Time) O(N) per query

Fenwick Tree / BIT O(log N) per update/query

Segment Tree O(log N) per update/query

Optimized Python Solution (Fenwick Tree)

class NumArray:
    def __init__(self, nums):
        self.nums = nums
        self.bit = FenwickTree(len(nums))
        for i, num in enumerate(nums):
            self.bit.update(i + 1, num)

    def update(self, index, val):
        self.bit.update(index + 1, val - self.nums[index])  # Difference update
        self.nums[index] = val

    def sumRange(self, left, right):
        return self.bit.range_sum(left + 1, right + 1)

# Example
nums = [1, 3, 5]
numArray = NumArray(nums)
print(numArray.sumRange(0, 2))  # Output: 9
numArray.update(1, 2)
print(numArray.sumRange(0, 2))  # Output: 8

✅  Faster than brute force.

⚠️  Fenwick Tree works well for sum queries but not min/max queries.

Conclusion

Fenwick Tree is simple and memory-efficient but limited to prefix sum
queries.
Segment Tree is more versatile but requires more space.
Both structures provide O(log N) updates and queries, making them crucial
for competitive programming and real-time range queries.



Chapter 21: Mock Interviews and Strategies

How to Approach Problems Effectively

When you're faced with a coding problem in an interview, the key is not just to
solve it but to solve it effectively. Here’s a step-by-step guide on how to approach
problems:

1. Understand the Problem Statement:
Clarify Edge Cases: Before jumping into coding, always ask for
clarifications. What happens when the input is empty? Are there any
constraints like maximum input size? Are there any special edge cases
you should be aware of?
Restate the Problem: Briefly restate the problem in your own words to
ensure you've understood it correctly. This will also help the interviewer
see how you approach problem-solving.

2. Plan Your Approach:
Break Down the Problem: If the problem is complex, break it down
into smaller, manageable parts. For example, if you’re working on a tree
traversal problem, think of it as traversing left and right subtrees and
handling nodes individually.
Choose a Data Structure: Consider what data structures best fit the
problem. For example, graphs are often best solved with adjacency lists,
whereas array-based problems may benefit from sorting or the sliding
window technique.
Pick an Algorithm: Select an algorithm that fits the problem. Think of
efficient algorithms like sorting, dynamic programming, or binary search.
If an optimal solution isn’t immediately clear, solve it using a brute-force
approach first, then optimize.
Time Complexity: Always consider the time and space complexity of
your solution. Try to avoid brute-force solutions unless they’re



acceptable within the given constraints. Aim for the best time complexity
that solves the problem efficiently.

3. Write the Code:
Start Simple: Write the solution step by step, ensuring that it works for
the simplest cases first.
Incremental Development: Test as you go. Don’t wait until the whole
solution is complete. This will help catch bugs early.
Keep it Clean: Maintain readable code with proper variable names.
Don’t rush to write cryptic code.

4. Verify the Solution:
Test Cases: After writing the code, run it with multiple test cases to
ensure its correctness. Test edge cases, and make sure the solution
handles large inputs efficiently.
Ask for Feedback: Once you've completed your solution, ask the
interviewer for feedback. See if there's a different approach they would
recommend, or if you could optimize the solution further.

Communicating During an Interview

Effective communication is a critical aspect of any interview, especially when
you're working through a problem. Here’s how to communicate well during your
coding interview:

1. Think Aloud:
Explain Your Thought Process: As you approach the problem, describe
the steps you're taking and the rationale behind your decisions. This will
show the interviewer that you understand the problem and are thinking
critically.
Use Visuals: If appropriate, draw diagrams or write out pseudocode. This
helps the interviewer see your approach clearly.

2. Ask Questions:
Clarify Assumptions: Don’t be afraid to ask questions about the
problem statement, input constraints, or edge cases. This not only helps



clarify the problem but also shows that you're thinking deeply.
Understand Requirements: If a solution seems ambiguous, ask for
examples of inputs and outputs to better understand the requirements.

3. Explain Trade-offs:
Discuss Your Approach: Once you’ve written your initial solution,
explain why you chose that particular approach. Discuss the time and
space complexity, and if you’ve used any particular algorithm or data
structure, explain why it was suitable for the problem.
Alternative Solutions: If time permits, mention any alternative
approaches you considered and why you chose the current one.

4. Stay Calm and Positive:
Don’t Panic: If you get stuck, don’t panic. Pause, take a breath, and try
to approach the problem from a different angle. The interviewer is often
more interested in seeing how you handle challenges than whether you
solve the problem on your first try.
Stay Positive: Even if you don’t immediately know the answer, express
enthusiasm for solving the problem. A positive attitude shows resilience
and problem-solving skills.

Debugging Efficiently

Debugging is an essential skill in coding interviews. Here’s how to debug
effectively during your interview:

1. Stay Calm:
Don’t Rush: If you encounter an error or the code doesn’t work, don’t
panic. Step back and methodically go through the problem.
Isolate the Problem: If the problem is complex, break it down and try to
isolate where things are going wrong. Start with smaller inputs and
gradually increase the complexity.

2. Use Print Statements or Debuggers:
Print Statements: Insert print statements to check intermediate values
and track the flow of the program.



Debuggers: If you’re allowed to use a debugger, step through the code to
identify where the logic is breaking.

3. Test with Edge Cases:
Edge Cases: Always test with edge cases after writing your code. For
example, consider input that is empty, negative, or extremely large.
Boundary Values: Test for the lower and upper boundaries of input
constraints. This often helps identify off-by-one errors or issues with
loops.

4. Revisit Your Algorithm:
Reassess Your Approach: If the code doesn’t work, consider whether
you’ve chosen the right algorithm or data structure. Sometimes, an error
arises because of a suboptimal approach.
Re-check Requirements: If you’re consistently getting wrong results,
revisit the problem statement. It’s easy to miss a requirement, and a small
oversight can lead to bugs.

5. Ask for Help if Needed:
Don’t Hesitate to Ask: If you’re stuck, don’t be afraid to ask the
interviewer for a hint. It’s better to ask for a nudge in the right direction
than to waste too much time in frustration.

Common Pitfalls

1. Misunderstanding the Problem:
Not Asking Clarifying Questions: Many candidates dive into coding
without understanding the problem fully. Always take the time to ask
questions and confirm edge cases.
Assumptions: Avoid making assumptions about input formats,
constraints, or expected output. Verify everything with the interviewer.

2. Over-Complicating the Solution:
Going for the Optimal Solution Too Early: While it’s important to
think about optimization, it’s equally important to get the basic solution
working first. Don’t try to optimize prematurely—get the brute-force
solution first and optimize later if necessary.



Ignoring Simplicity: Some problems have elegant, simple solutions, but
candidates often overthink them. Always start with the simplest solution
that works and improve upon it if needed.

3. Not Testing Thoroughly:
Skipping Edge Cases: It’s easy to forget about edge cases like empty
inputs, negative numbers, or large inputs. Always test these cases to
ensure the solution is robust.
Assuming the Code Works Without Testing: Don’t assume that your
code works perfectly just because it runs for a few basic cases. Always
run it with a variety of test cases.

4. Not Communicating Clearly:
Not Explaining Your Thought Process: Simply writing code without
explaining it may leave the interviewer in the dark about your approach.
Be sure to talk through your thought process, so the interviewer can
follow your reasoning and provide feedback.
Over-explaining: On the other hand, over-explaining simple concepts or
code can waste time. Strike a balance between being clear and being
concise.

5. Failing to Handle Time Pressure:
Panic Under Time Constraints: Coding interviews often come with a
time limit. Stay calm, and don’t rush. Focus on writing correct code first,
then optimize if you have time.
Inability to Manage Time Efficiently: Allocate time for each part of the
interview—understanding the problem, planning your solution, coding,
testing, and debugging. Don’t spend too much time on any single part.

Summary

Mock interviews and practicing strategies are crucial to mastering coding
interviews. By understanding how to approach problems methodically,
communicating clearly with your interviewer, debugging efficiently, and avoiding
common pitfalls, you can set yourself up for success. Here are the key takeaways:



Understand the problem thoroughly before you start solving it.
Communicate your thought process clearly and effectively.
Debug strategically by isolating the issue and testing with edge cases.
Stay calm and manage time wisely to perform well under pressure. By
practicing mock interviews and following these strategies, you can improve
both your problem-solving skills and your confidence during interviews.

Final Notes

Last-Minute Revision Checklist

As you approach your coding interview, it’s essential to prepare effectively and
focus on the key areas that will make the biggest impact. Use this checklist to make
sure you’re ready for the big day:

1. Review Core Algorithms & Data Structures

Key Patterns: Make sure you’ve reviewed all major problem-solving patterns
such as sliding window, two pointers, dynamic programming, and graph
traversal algorithms. These are the core techniques that often appear in coding
interviews.
Data Structures: Double-check your understanding of essential data
structures like arrays, linked lists, stacks, queues, hash maps, heaps, and trees.
Know how to manipulate and traverse them efficiently.
Time & Space Complexity: Revisit the concepts of Big O notation for time
and space complexity. Be ready to discuss the trade-offs between different
approaches, especially in terms of efficiency.

2. Practice Key Problems

Grind 75 Problems: If you’ve been following the Grind 75 list, make sure
you can solve all of them confidently. Practice solving them within a time
limit to simulate real interview conditions.



Common Interview Questions: Make sure you’re comfortable with classic
problems like:

Array manipulation (e.g., Two Sum, Product of Array Except Self)
String problems (e.g., Longest Substring Without Repeating
Characters, Anagram)
Dynamic programming (e.g., Coin Change, Longest Increasing
Subsequence)
Graph problems (e.g., Number of Islands, Course Schedule)

3. Mock Interviews

Simulate the Interview Environment: Practice solving problems in a mock
interview setting. Time yourself, and have a friend or mentor act as the
interviewer. This will help you build the stamina and confidence to think and
code under pressure.
Explain Your Solution: Practice thinking out loud and explaining your
approach clearly. Interviewers appreciate candidates who can articulate their
thought process, and it helps build rapport.

4. Review Behavioral Questions

STAR Method: Review behavioral questions and practice answering them
using the STAR (Situation, Task, Action, Result) method. Be ready to discuss
your past experiences in terms of how you faced challenges and solved
problems.
Leadership Principles (if applying to Amazon or similar companies):
Prepare examples that demonstrate your ability to lead, take initiative, and
collaborate effectively.

5. Review Code Snippets

Reusable Code: Revisit any common code snippets you use often. These may
include:

Code for reversing a string or linked list.



Implementations of binary search.
Methods for deep copying objects or arrays.

Edge Case Handling: Have a mental checklist for edge cases such as empty
arrays, large inputs, negative numbers, or null values.

6. Double-Check Your Setup

Coding Environment: Ensure your coding environment is ready, whether it’s
an online coding platform or your IDE. Make sure you are comfortable with
the tools you'll be using during the interview.
Internet Connection (for virtual interviews): If you're doing a virtual
interview, check your internet connection and make sure your webcam and
microphone are working properly.
Comfortable Environment: Ensure your environment is quiet, comfortable,
and free from distractions.

7. Final Review of Key Interview Strategies

Time Management: Be aware of how much time you should spend on each
step: understanding the problem, planning your solution, coding, and testing.
If you're stuck, ask the interviewer for clarification or a hint.
Stay Calm and Positive: Remember that the interviewer is not only looking
for a correct solution but also for how you approach problems. If you get
stuck, stay calm, work through the problem, and demonstrate your problem-
solving process.
Clarify Before Coding: Make sure you fully understand the problem and the
requirements before diving into coding. Don't hesitate to ask clarifying
questions.

Recommended Resources

To further enhance your preparation, here’s a list of valuable resources that will help
you refine your coding and interview skills:

1. LeetCode



LeetCode Premium: If possible, subscribe to LeetCode Premium to access
more problems, company-specific questions, and solutions. It’s a great
platform for practicing coding problems.
LeetCode Explore: LeetCode offers an "Explore" feature, where you can
follow structured tracks for specific topics like dynamic programming, arrays,
strings, and more.

2. Cracking the Coding Interview by Gayle Laakmann McDowell

A comprehensive book that provides a deep dive into coding interview
preparation, covering algorithms, problem-solving strategies, and behavioral
questions.

3. Elements of Programming Interviews by Adnan Aziz

This book includes a large set of practice problems, along with detailed
solutions and explanations. It’s a great resource for honing your skills in
solving challenging coding problems.

4. GeeksforGeeks

GeeksforGeeks is a fantastic online platform that offers tutorials, interview
experiences, and an enormous library of coding problems with explanations
and solutions.

5. Interviewing.io

This platform provides mock interviews with engineers from top tech
companies. It’s an excellent way to practice solving problems in a real
interview environment with feedback from professionals.

6. System Design Interview by Alex Xu

If you’re preparing for system design interviews, this book is a must-read. It
provides a structured approach to solving system design problems and
includes several real-world examples.



7. YouTube Channels

Tushar Roy – Coding Made Simple: Offers great explanations for algorithms
and data structures with a focus on coding interview preparation.
Tech Dummies – Tutorials: A great channel for learning complex coding
interview topics and tips for navigating the interview process.
Climbing the Coding Ladder: Focuses on interview problem-solving,
breaking down complex problems into manageable steps.

8. HackerRank and CodeSignal

Both platforms provide coding challenges that simulate real interview
environments. You can practice timed problems, participate in coding
competitions, and get immediate feedback.

9. Mock Interview Platforms

Pramp: A platform where you can practice mock interviews with peers.
Pramp offers interview simulations for coding as well as behavioral and
system design rounds.
Exponent: Provides a series of mock interview questions and solutions, along
with an interview coaching service.

10. Soft Skills and Behavioral Interview Prep

The Complete Guide to Behavioral Interviews: A book focused on
preparing you for the behavioral rounds of interviews, including questions on
leadership, problem-solving, and conflict resolution.
Amazon Leadership Principles: If you’re targeting a company like Amazon,
review their Leadership Principles thoroughly. Be ready to relate your past
experiences to these principles.

Conclusion



Preparing for coding interviews can be overwhelming, but by staying organized and
using the right resources, you can ensure you're ready for success. The key to acing
coding interviews lies in practice, clear communication, and a calm, methodical
approach to problem-solving.

As you move forward in your preparation, keep this final checklist handy, use the
recommended resources to deepen your understanding, and make sure you stay
focused on continuous improvement. Good luck with your interviews!
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